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Abstract 
In software systems, it has been observed that a fault is often caused by an interaction between a small number 
of input parameters. Even for moderately sized software systems, exhaustive testing is practically impossible 
to achieve. This is either due to time or cost constraints. Combinatorial (t-way) testing provides a technique 
to select a subset of exhaustive test cases covering all of the t-way interactions, without much of a loss to the 
fault detection capability. In this paper, an approach is proposed to generate 2-way (pairwise) test sets using 
genetic algorithms. The performance of the algorithm is improved by creating an initial solution using the 
overlap coefficient (a similarity matrix). Two mutation strategies have also been modified to improve their 
efficiency. Furthermore, the mutation operator is improved by using a combination of three mutation 
strategies. A comparative survey of the techniques to generate t-way test sets using genetic algorithms was also 
conducted. It has been shown experimentally that the proposed approach generates faster results by achieving 
higher percentage coverage in a fewer number of generations. Additionally, the size of the mixed covering 
arrays was reduced in one of the six benchmark problems examined. 
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1. Introduction 

Software testing is an important technique for producing reliable software systems and to maintain 
quality control. More than 50% of software development resources are being spent on testing [1]. For a 
complex system, which has n input parameters where each parameter can take single discrete v values, 
the exhaustive testing would require different vn input cases. It has been observed that the number of 
necessary test cases grows exponentially as the number of input parameters increases [2]. Due to time 
and resource constraints, exhaustive testing is practically impossible to achieve and a technique that 
selects a subset of exhaustive test cases without causing much of a loss to the fault detection capability of 
the system is required. Combinatorial testing provides the solution.  

Combinatorial testing is based on the fact that many faults can be exposed by interactions involving 
only a few input parameters. It creates tests by selecting values for input parameters and then 
combining these values, such that every combination of values of any t parameters are covered by at 
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least one test case. Here, t is referred to as the strength of coverage and usually takes a small value [2]. 
The notion of t-way testing can substantially reduce the number of tests. A system with 20 parameters 
where each parameter can have 10 possible values requires 1020 tests for exhaustive testing; but only 180 
tests for pairwise testing. Empirical studies have shown that t-way testing can effectively detect faults in 
various types of applications [3].  

For the generation of test cases from parameter combinations, various combinatorial objects are used, 
such as Latin squares [4], orthogonal arrays [5], covering arrays [5,6], etc. Out of these, covering arrays 
(CAs) are the most widely used. A CA (N, k, S, t) is an N×k matrix that takes values from a finite set S of 
s symbols such that each N×t sub-matrix contains each possible t-tuple at least once, where N denotes 
the number of test cases, k is the number of input parameters, and s is the number of values each 
parameter can take. A mixed level covering array (MCA) (N, t, k, v1v2....vk) is an N×k matrix where each 
column ci, for 1≤ i≤ k, can take values from the set (0, 1, ...vi-1), such that each N×t sub-matrix contains 
each possible t-tuple at least once. Here, N denotes the number of test cases, k is the number of input 
parameters, and vi is the number of values the parameter ci can take when 1≤ i≤ k. The matrix can also 
be represented as MCA (N, t, s1

k1s2
k2.....sp

kp), which implies k1 parameters can have s1 values, k2 
parameters can have s2 values, and so on. Thus, it is a matrix of N×k elements where each N×t sub-
matrix contains at least one occurrence of each t-tuple corresponding to the columns and                 [1].  

A genetic algorithm (GA) is an evolutionary algorithm that has emerged as a practical, robust, 
optimization technique and a search method. GA is inspired by the way species evolve in nature via 
natural selection of the survival of the fittest individual [7]. The initial population is a set of possible 
candidate solutions (individual or chromosome) for the problem. The fitness value of an individual is 
calculated using the fitness function. A GA uses three operators, namely selection, crossover, and 
mutation, to improve the solution. A GA stops when stopping criteria is satisfied (i.e., either the 
solution is found or the maximum number of generations has taken place). The basic algorithm for a 
GA is presented in Fig. 1. 

 

 
Fig. 1. Basic algorithm of genetic algorithm. 

 
In this paper, an approach for improving the performance of the GA is proposed. This proposed 

approach is capable of covering all of the pairwise interactions of the input set in a lesser number of 
generations. The performance of the GA is improved by improving the initial population and mutation 
function. A comparative review of the techniques to generate CAs using the GA is presented. 
Experimental results and a comparison of the proposed approach with an existing approach are also 
presented. The rest of the paper is organized as follows: Section 2 gives a brief overview of the work that 
has been done in this field. Section 3 describes the proposed approach to generate the optimal solution in a 
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lesser number of generations. Section 4 presents the experimental results and shows the effectiveness of the 
proposed approach. Section 5 concludes the paper and directions for future work are discussed.  

 
 

2. Related Work 

In the literature on combinatorial testing, several effective methods exist for constructing (near) optimal 
CAs. They are broadly classified into: mathematical methods, recursive methods, greedy methods, 
metaheuristic methods, and hybrid methods. Mathematical methods use mathematical functions to 
construct orthogonal arrays for test set generation [8]. Recursive methods require combinatorial objects of 
specific dimensions to construct larger instances of combinatorial objects. Greedy algorithms include the 
one-row-at-a-time approach and the In-Parameter-Order (IPO) algorithm. In the one-row-at-a-time 
approach, a single row of the array is constructed at each step until all t-sets have been covered. Examples 
include an automatic efficient test generator (AETG) [9] and the density-based greedy algorithm [10]. The 
IPO algorithm generates all t-sets for the first t factors and then incrementally expands the solution, both 
horizontally and vertically, until the array is complete [11]. Metaheuristic algorithms include tabu search 
[6], simulated annealing [12], ant colony optimization (ACO) [13], particle swarm optimization (PSO) 
[14,15], GA [16-22], Harmony Search [23,24], etc. The hybrid approach combines different methods to 
efficiently generate a small test suite. The mathematical method can be combined with metaheuristics, or 
greedy methods can be combined with mathematical methods to generate a test suite [25]. Next, GA 
approaches for t-way testing are discussed. 

Ghazi [16] has proposed a technique for generating pairwise test configurations. The fitness function 
used for evaluating a chromosome is calculated as the number of distinct pairs covered by the 
chromosome divided by the total number of possible pairwise interaction configurations. However, the 
experimental data considered is simple. Moreover, the author has not discussed mutation and the 
crossover operators used in the algorithm. 

McCaffrey [17,22] has proposed a genetic algorithm for pairwise test sets (GAPTS) technique for 
pairwise test case generation. For chromosome representation, integer array encoding is used. The 
fitness function defined is the total number of distinct pairs captured by the individual chromosome. 
Various GA parameter values defined are: population size, 20; selection method, roulette wheel 
selection; crossover, single crossover point; mutation rate, 0.001, etc. GAPTS uses a form of elitism, in 
which the individual with the highest fitness value in the population is immune from removal in each 
generation. For immigration, an individual with randomly generated chromosomes is inserted into the 
population after every 1,000 generations. The results obtained are comparable to or better than the 
other five algorithms examined. However, the GAPTS program required more time to generate 
pairwise test sets than other algorithms examined and the time to produce results increases with an 
increase in the size of input.  

Flores and Cheon [18] developed an open source tool called PWiseGen for generating pairwise test 
sets. It is configurable, extensible, and reusable. The chromosome encoding used is integer array 
encoding. The authors have defined two fitness functions of counting the number of different pairs and 
penalizing for repeated pairs. The selection method used is roulette wheel selection. The crossover 
variants defined are the single crossover point, single random crossover point, multiple crossover point, 
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and multiple random crossover point. The authors defined smart mutations, namely similarity 
mutation, value occurrence mutation, and pair occurrence mutation. As per the experimental data, 
PWiseGen shows comparable results with other approaches. 

 
Table 1. Comparison of different test case generation approaches using GA 

Reference t-way Fitness function GA parameters Main features Experimental results 
Ghazi and 
Ahmed [16] 

Pairwise 
test 
cases 

Number of distinct 
pairs covered by 
the chromosome 
divided by total 
number of possible 
pairs 

Proposed that GA 
can be used to 
generate t-way test 
sets. 

Experimental data 
considered is simple. 

McCaffrey 
[17,22] 

Pairwise 
test 
cases 

Total number of 
distinct pairs 
captured by the 
individual 

Population size 20, 
roulette wheel selection 
method, single crossover 
point, mutation rate 
0.001, elitism, 
immigration

Technique: GAPTS
 
Chromosome 
representation: 
integer array 
encoding

Required more time 
to generate test sets. 
 
Takes longer time to 
produce results as 
input size increases. 

Flores and 
Cheon [18] 

Pairwise 
test sets 
 

Counting the 
number of 
different pairs, and 
penalising for 
repeated pairs.  

Roulette wheel selection 
method 
 
Crossover variants: 
single, single random, 
multiple, and multiple 
random crossover point 

Developed an open 
source tool called 
PWiseGen 
 
Chromosome 
encoding: integer 
array encoding 
 
Introduced smart 
mutations

Execution time is not 
considered. 
 

Yalan et al. 
[19] 

 Systematically 
examines the 
impact of and 
interactions 
between GA’s five 
configurable 
parameters.  
  

Elitism, lengthier 
evaluation process 
and creating fewer 
mutated individuals 
lead to better CA. 
 
Values of parameters 
considered are 
discrete. 

Shiba et al. 
[20] 

Test 
cases for 
t=2 and 
t=3 

Number of new t-
way combinations 
that are covered by 
the test case.  
 

Tournament selection 
method, elitism, uniform 
crossover and mutation 
 
Stopping criteria: when 
the total number of 
generated candidate tests 
exceeds a given number. 

Defined stagnation 
condition to escape 
from local minima.
 
Compaction 
algorithm to 
reduce the number 
of test cases. 

t-way test sets 
generated are not 
always optimal. 
 

Bansal et al. 
[21] 

Pairwise 
test 
cases 

Counting the 
number of 
different pairs 

Crossover strategy: 
crossover points are 
selected by identifying 
portion of chromosome 
covering least number of 
distinct pairs. 

Initial solution: 
Hamming distance
 

Results obtained are 
fitter as compared to 
existing approach. 

GA=genetic algorithm, GAPTS=genetic algorithm for pairwise test sets, CA=covering array. 
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Yalan et al. [19] designed three classes of experiments (i.e., pairwise, base choice and hill climbing) to 
systematically examine the impact of and interactions among the GA’s five configurable parameters 
(population size, number of generations, crossover probability, mutation probability, and GA variants). 
It was observed that the selection methods (random selection of chromosomes and selecting inferior 
and eliminating superior chromosomes) with elitism generate better configurations. Employing a 
lengthier evaluation process improves the solution. Creating fewer mutated individuals leads to better 
CA. However, the authors have considered discrete values for configuration parameters. 

Shiba et al. [20] proposed a test generation algorithm for combinatorial testing based on the GA. The 
fitness function calculates the number of new t-way combinations that are covered by the test case. 
Stopping criteria is achieved when the total number of generated candidate tests exceeds a given 
number. The selection operator used is tournament selection. An elite strategy is used to retain the best 
chromosome in the population at each generation. Uniform crossover and mutation are performed. In 
order to escape from local minima, the authors have defined stagnation condition that if there is no 
improvement in the solution for a specified number of generations, then massive mutation is applied to 
each position of every chromosome. A compaction algorithm is also proposed to improve the size of t-
way test set. The authors conducted some experiments to show the effectiveness of the proposed 
algorithms. However, the t-way test sets generated are not always optimal. 

Bansal et al. [21] proposed an approach to generate pairwise test cases using the GA. The authors 
generated the initial solution using the Hamming distance. A new crossover strategy that selects 
crossover points by identifying portions of the chromosome covering the least number of distinct pairs 
was also proposed. A comparative study of the different t-way test set generation approaches using GAs 
is summarized in Table 1. 

As can be concluded from this literature survey, various approaches for t-way test set generation 
using the GA have been proposed. Most of the approaches have generated (near) optimal test sets. 
However, the time required to generate the t-way test set is considerably large. Thus, an approach that 
generates optimal t-way test sets in a fewer number of generations is required. In PWiseGen [18], apart 
from simple mutations, mutations specific to pairwise testing have also been defined. Hence, we aim to 
define a GA that is customized to two-way testing and investigate its efficiency.  

 
 

3. GA Based Pairwise Test Set Generation (Proposed Approach) 

GAs have been used to solve a large set of problems in artificial intelligence, including test set 
generation for pairwise testing. The basic GA improves the solution for a given problem by using 
operators such as crossover, selection, and mutation. 

The key features of the proposed approach are as follows. 1) It provides a method to create an 
improved initial solution. 2) It offers a method that improves the value occurrences mutation. 3) It also 
provides a method to improve the pair occurrences mutation. 4) It facilitates to use a mixture of 
mutation methods. 

The terminology used is defined as follows: A MCA (N, t, s1
k1s2

k2.....sp
kp) represents the test set M of 

N×k size, where each column Pj (1≤ j≤ k) represents an input parameter and each row is a test case. An 
element mi,j in matrix M can take a value from the set {0,1,...Vj-1} where, Vj is the possible values the jth 
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parameter can take. Thus, the parameter Pj can have a value from the set Sj={0,1,......Vj-1}, where, Vj is 
the cardinality of the set Sj (1≤ j≤ k), N is the total number of test cases, and k is the total number of 
input parameters. 

 
3.1 Creating an Initial Population 

 
In the case of combinatorial testing, a candidate solution (chromosome) is represented as a sequence 

of test cases, where the count of test cases represents the CA number and the size of the test case is equal 
to the total number of input parameters [18]. A test case contains one value corresponding to each 
input parameter. For chromosome representation, integer array encoding is used as suggested in [18]. 
In a GA an initial solution can be generated randomly [18] or by using techniques such as Hamming 
distance [21], Euclidean distance [6], etc.  

In our proposed approach, an overlap coefficient (a similarity measure) is used to generate the initial 
solution. An overlap coefficient measures the overlap between two sets and is defined as the set of 
intersections divided by the smaller size of the two sets [26,27].  

 

),min(

}{}{
),(

YX

YX
YXOverlap

I
=

           (1)   

 
where, X and Y are sets. The algorithm for creating the initial population is described in Fig. 2. 

 

 

Fig. 2. Algorithm for creating initial population. 
 

First, a random test case is generated and added to the test set. Then, an iterative process is followed 
in which P candidate test cases {tc1, tc2,......tcp} are generated, where the value of P is one third of the test 
set size. Each tci, for 1≤ i≤ P, is compared with the test set already generated to calculate the overlap 
coefficient using Eq. (1) where: 

X= set of pairs covered by the test set already generated 
Y= set of pairs covered by the test case tci, where, 1≤ i ≤ P. 

The test case having a minimum overlap coefficient with the test set already generated is added to the 
test set. The iterative process is repeated until the size of the test set already generated is less than N, 
where N is the test set size to be achieved. The generated solution is better in terms of fitness value (i.e., 
covers a greater number of distinct pairs). 

Begin 
Generate a random test case. 
Add that random test case to the test set. 
While test set size is not achieved 
{ 
• Randomly generate P test cases (tc1, tc2, ....tcP), where P =(test set size)/3. 
• From the generated test case, select the test case having minimum overlap coefficient with 

the test set already created. 
• Add it to test set. 
} 
End 
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3.2 Value Occurrences Mutation 
 

Flores and Cheon [18] defined the value occurrences mutation as a mutation strategy that replaces a 
duplicate value of a parameter in an individual (chromosome) with a missing value of that parameter. 
An attempt has been made to improve the efficiency of the value occurrences mutation. The algorithm 
is described in Fig. 3. 

 

Fig. 3. Algorithm for improved value occurrences mutation. 
 

For each parameter Pj (1≤ j≤ k), a Min_Value_Countj value is calculated, where:  
 

Min_Value_Countj = max {{V1,V2.......Vk}-Vj} for 1≤ j≤ k        (2)   
 

It calculates the minimum number of times each value of a parameter must occur in order to cover all 
of the value pairs with different values of other parameters. For each parameter Pj (1≤ j ≤ k), it calculates 
the Min_Value_Countj by considering all the parameters P1, P2,.....Pk, excluding parameter Pj. Then, for 
the remaining k-1 parameters, their corresponding Vm value is identified, where Vm is the number of 
possible values for parameter Pm (1≤ m ≤ k). The highest numeric Vm value is assigned to the 
Min_Value_Countj. Thus, for each parameter, the Min_Value_Count is calculated. It then identifies a 
value of parameter Pj, whose occurrence is less than the Min_Value_Countj for that parameter. Then, 
for that parameter, the highest occurring value is identified and replaced with the value whose 
occurrence is less than the Min_Value_Count for that parameter.  

For example, for the problem of MCA (N, 2, 413221), parameter P1 can have four values (a, b, c, d), 
parameter P2 can have three values (e, f, g), parameter P3 can have three values (h, i, j), and parameter P4 
can have two values (k, l). Thus, the values of V1, V2, V3 and V4 are 4, 3, 3, and 2, respectively. Using Eq. 
(2), the Min_Value_Count for P1 is 3, and for P2, P3, and P4 is 4. Thus, each value of P1 must occur at 
least three times in order to form all possible pairs with three different values of P2 and P3 each. 

Table 2 shows the MCA (N, 2, 413221). Here, each value of P1 occurs at least three times and each value 
of P2, P3 and P4 occurs at least four times. This is in conformation with our calculation of the 
Min_Value_Count value. While generating the solution, if an intermediate matrix contains three 
occurrences of “e” and five occurrences of “f,” then value occurrences mutation first computes the 
Min_Value_Count for each parameter. Then, it identifies the value “e,” as its occurrences are less than 
the Min_Value_Count for parameter P2. Then for parameter P2 it identifies a value whose occurrences 
are greater than the Min_Value_Count and is highest, which in this case is value “f.” Finally, it replaces 
one occurrence of “f” with “e.” 

• Begin 
• Identify the value of Min_Value_Count for each parameter using (2). 
• Identify a parameter’s value whose occurrence is less than Min_Value_Count for that parameter. 
• Identify a value for the identified parameter whose occurrence is highest among the possible 

values for the parameter. 
• Replace the highest occurring value with a value having occurrence less than Min_Value_Count for 

that parameter. 
• End 
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Table 2. Mixed covering array for (N, 2, 413221) 
P1 P2 P3 P4 
a e h k 
a f i l 
a g j k 
b e i l 
b f h k 
b g j l 
c f j k 
c e h l 
c g i k 
d e j l 
d f i k 
d g h l 

 

The value occurrences mutation improves the solution for the first few generations. When all of the 
occurrences of values are greater than or equal to their corresponding Min_Value_Count, then the 
mutation does not change the solution. Furthermore, an attempt has been made to improve the 
solution by changing the structure of the solution. The algorithm is described in Fig. 4. 

 

Fig. 4. Algorithm for improving structure of the solution in value occurrences mutation. 
 

An uncovered pair (valuei, valuej) (i.e., a value pair not covered in the test set is identified). Here, 
valuei ϵ Si of parameter Pi and valuej ϵ Sj of parameter Pj, and 1≤ i< j≤ k, (i.e., in the test case Pi) appears 
before Pj. A test case tcm (1≤ m≤ N) is identified where the value of Pi is valuei. Then, another test case 
tcn (1≤ n≤ N) is identified where value of Pj is valuej. The genes of tcm and tcn are interchanged from 
gene location i+1 till location j. Thereby, the resultant test set covers the pair (valuei, valuej) without 
there being much of a loss to the existing covered pairs. 

 

3.3 Pair Occurrences Mutation 
 

Flores and Cheon [18] have defined the pair occurrences mutation as a mutation strategy that 
replaces a duplicate pair in an individual with a missing pair of the same parameters. We have 
attempted to improve the pair occurrences mutation. The algorithm is presented in Fig. 5.  

The shortcoming of the existing approach is the loss of the distinct pairs already covered, as the 
values that are being replaced might be contributing to the distinct pairs covered. Our proposed method 
attempts to reduce the loss of the existing distinct pairs covered. All of the values in the test set that are 
not covering a distinct pair have been identified. A value pair (valuei, valuej) having no occurrence in 
the test set was then identified. Here, valuei ϵ Si of parameter Pi and valuej ϵ Sj of parameter Pj, and 1≤ 

• Begin 
• Identify an uncovered pair (valuei, valuej) where valuei ϵ Si of parameter Pi and valuej ϵ Sj 

of parameter Pj, and 1≤ i< j≤ k.  
• Identify a test case tcm (1≤ m ≤ N) where value of Pi is valuei.  
• Identify another test case tcn (1≤ n ≤ N) where value of Pj is valuej.  
• Interchange the genes of tcm and tcn from gene location i+1 till location j. 
• End  
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{i, j} ≤ k and i ≠ j. Then a test case tcl (1≤ l≤ N) is identified in which either or both of the values 
corresponding to parameters Pi and Pj are not covering a distinct pair. Then, the value corresponding to 
parameters Pi and Pj in the test case tcl is replaced with the valuei and valuej, respectively.  
 

 
Fig. 5. Algorithm for improved pair occurrences mutation. 

 
For example, for the problem of MCA (N, 2, 413221), parameter P1 can have four values (a, b, c, d), 

parameter P2 can have three values (e, f, g), parameter P3 can have three values (h, i, j), and parameter P4 
can have two values (k, l). The total pairs to be covered are 53. To demonstrate our method, consider 
the test set given in Fig. 6. First, all of the values in the test set that are not covering a distinct pair are 
identified. The evaluation starts from test case tc1 and continues from left to right (i.e., first, “a” in tc1 is 
evaluated and then “e” in tc1 and it continues until “k” in tc7). It is observed in tc6 that the value “l” does 
not contribute to the distinct pairs covered by the test set, as the pair “bl” is already covered by tc2, “gl” 
by tc3, and “jl” by tc3. Similarly, “a” and “e” in tc7 also do not contribute a distinct pair. Thus, value “l” in 
tc6 and values “a” and “e” in tc7 are identified. Next, for the given test set, uncovered pairs are identified. 
These are af, ag, aj, be, bh, bk, ce, cf, ch, ck, ci, df, dg, di, dj, dl, ej, fh, fj, fk, gh, gi, gk, hl, and jk. From these 
uncovered pairs, a pair is selected at random. The cases explained below may arise.  

 

Aehk bfil cgjl dehk aeil bgjl aeik 

tc1 tc2 tc3 tc4 tc5 tc6 tc7 

Fig. 6. Test set for the problem of mixed level covering array (N, 2, 413221). 
 

Case 1: The uncovered pair “fh” is selected. Here, “f” belongs to parameter P2 and “h” belongs to 
parameter P3. The next step is to identify a test case in which at least one of the values for parameters P2 
and P3 are not covering a distinct pair. As can be seen, no test case exists for which the values for P2 and 
P3 are marked. For tc7 the value of P2 is marked. Thus, the values of P2 and P3 are replaced in tc7 by “f” 
and “h,” respectively.  

Case 2: Uncovered pair “cf” is selected. Here “c” belongs to parameter P1 and “f” belongs to parameter 
P2. The next step is to identify a test case in which at least one of the values for parameters P1 and P2 are 
not covering a distinct pair. As can be seen, the tc7 values of P1 and P2 are marked. Thus, the values of P1 
and P2 are replaced in tc7 by “c” and “f,” respectively.  

Thus, the proposed approach helps to reduce the loss of pairs already covered by the test set. 

• Begin 
• Identify all the values in the test set which are not covering a distinct pair 
• Select an uncovered pair (valuei, valuej), where valuei ϵ Si of parameter Pi and valuej ϵ Sj of 

parameter Pj, and 1≤{ i, j} ≤ k and i≠j.  
• Identify a test case in which at least one of the values for parameter Pi and Pj are not 

covering a distinct pair. 
• Replace the value corresponding to parameter Pi and Pj in the test case with valuei and 

valuej respectively.  
• End 
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3.4 Use of Mixture of Mutation Methods 
 

In the proposed approach, a combination of three mutation methods, namely simple mutation, value 
occurrences mutation, and pair occurrences mutation, is used. In simple mutation, the gene to be 
replaced is randomly selected and its value is replaced with a valid random value for that gene location. 
For the first ¼ of the maximum possible generations, the value occurrences mutation is used. For the 
initial generations, where the initial solution may have missed certain values from the solution, the 
value occurrences mutation improves the results. Afterwards, until ¾ of the maximum possible 
generations, mutation method to be used is simple mutation is used. At that stage, in most of the cases, 
98% coverage (in terms of total pairs) is achieved, leaving only a few uncovered pairs. Then, pair 
occurrences mutation that selectively finds an uncovered pair and tries to fix it in the test set without 
there being much of a loss to the existing pairs covered is used.  

 

 

4. Experimental Results 

The proposed approach has been implemented using the open source tool of PWiseGen [18]. It is 
implemented in Java programming language and generates test cases for pairwise testing using GA. A 
series of experiments were conducted in order to empirically evaluate the effectiveness of the 
proposed approach. The performance was evaluated using the following six benchmark problems of 
different sizes: 34, 313, 415317229, 41339235, 2100, and 1020, where ab means “b” input parameters have “a” 
distinct possible values. These six benchmark problems were input to PWiseGen with an existing 
approach, as described in [18], and to our improved approach. The effectiveness of both of the 
approaches were measured in terms of percentage coverage (pairs covered out of total pairs) versus 
the generation number. An approach that achieves higher percentage coverage in a fewer number of 
generations is considered to be better. In order to analyze the effect of the initial solution and the 
mutation strategy, we kept other factors, such as population size, mutation rate, crossover strategy, 
etc. as the same for both of the approaches. Each approach was executed 30 times for each 
benchmark problem. The results obtained were averaged and plotted on a graph where the x-axis 
represents the generation number and the y-axis represents the percentage coverage. The results are 
summarized in Fig. 7. As can be analyzed from the graphs, our proposed approach achieves higher 
coverage in a fewer number of generations in all of the cases. Table 3 represents the size of the test set 
obtained for the six benchmark problems. It does so by using the proposed approach and existing 
approaches of the pairwise test set generation in the following work by Flores and Cheon 
(PWiseGen) [18], McCaffrey (GAPTS) [17], and Shiba et al. [20]; and other approaches such as 
AETG [9], which generates test sets using the greedy approach; by Chen et al. [14] using PSO; and 
Shiba et al. [20] using ACO. As can be seen, GA approaches give comparable results to other 
approaches taken under consideration. However, for Problem 6, AETG [9] generates better results. 
On examining GA approaches, it is observed that the proposed approach generates comparable 
results to other approaches using GA. Moreover, for the problem of size 41339235, the size of the MCA 
has been reduced from 26 to 25 using the proposed approach. 
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Table 3. Results of the performance of proposed approach compared with the existing approaches of 
Pairwise test set generation for the six benchmark problems 

 Total 
pairs 

Proposed 
approach

PWiseGen 
[18] 

GAPTS 
[17] 

GA 
[20] 

AETG 
[9] 

ACO 
[20]  

PSO 
[14]  

Problem 1 (34) 54 9 9 9 9 9 9 9 

Problem 2 (313) 702 15 15 15 17 17 17 18 

Problem 3 (415317229) 14026 34 34 35 37 41 37 38 

Problem 4 (41339235) 17987 25 26 27 27 28 27 27 

Problem 5 (2100) 19800 10 10 10 12 10 13 13 

Problem 6 (1020) 19000 220 220 196 227 194 225 213 

GAPTS=genetic algorithm for pairwise test sets, GA=genetic algorithm, AETG=automatic efficient test generator, ACO=ant 
colony optimization, PSO=particle swarm optimization. 

 

 

  

  

  

Fig. 7. Comparison of the proposed approach and existing approach for the six benchmark problems. 
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5. Conclusion  

In this paper, a survey of the techniques generating t-way test sets from a GA has been conducted. It 
has been observed that the GA generates (near) optimal test sets. Mutation methods that are 
customized to pairwise testing have also been proposed by the researchers. We were motivated by these 
mutation methods, as we believe that a customized mutation method will generate results in a fewer 
number of generations, as compared to the simple mutation method. We have proposed algorithms 
that can improve these mutation methods, namely value occurrences mutation and pair occurrences 
mutation. Moreover we improved the performance of the algorithm by creating an input solution using 
a similarity matrix—the overlap coefficient. Lastly, rather than using a single mutation method, we used 
a combination of three mutation methods to mutate the solution. It can be concluded from the results 
that the proposed approach generates solutions with higher percentage coverage in a fewer number of 
generations. Moreover, the size of MCA (N, 2, 75, 41339235) was reduced from 26 to 25 using the 
proposed approach. As for future work, we will further investigate the efficiency of the GA after 
customizing it to t-way testing. Moreover, we will extend our approach for the generation of higher 
strength t-way test cases. 
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