

www.kips.or.kr Copyright© 2017 KIPS

Test Set Generation for
Pairwise Testing Using Genetic Algorithms

Sangeeta Sabharwal* and Manuj Aggarwal*

Abstract
In software systems, it has been observed that a fault is often caused by an interaction between a small number
of input parameters. Even for moderately sized software systems, exhaustive testing is practically impossible
to achieve. This is either due to time or cost constraints. Combinatorial (t-way) testing provides a technique
to select a subset of exhaustive test cases covering all of the t-way interactions, without much of a loss to the
fault detection capability. In this paper, an approach is proposed to generate 2-way (pairwise) test sets using
genetic algorithms. The performance of the algorithm is improved by creating an initial solution using the
overlap coefficient (a similarity matrix). Two mutation strategies have also been modified to improve their
efficiency. Furthermore, the mutation operator is improved by using a combination of three mutation
strategies. A comparative survey of the techniques to generate t-way test sets using genetic algorithms was also
conducted. It has been shown experimentally that the proposed approach generates faster results by achieving
higher percentage coverage in a fewer number of generations. Additionally, the size of the mixed covering
arrays was reduced in one of the six benchmark problems examined.

Keywords
Combinatorial Testing, Genetic Algorithm, Mixed Covering Arrays, Pairwise Testing, Test Set, t-way Testing

1. Introduction

Software testing is an important technique for producing reliable software systems and to maintain
quality control. More than 50% of software development resources are being spent on testing [1]. For a
complex system, which has n input parameters where each parameter can take single discrete v values,
the exhaustive testing would require different vn input cases. It has been observed that the number of
necessary test cases grows exponentially as the number of input parameters increases [2]. Due to time
and resource constraints, exhaustive testing is practically impossible to achieve and a technique that
selects a subset of exhaustive test cases without causing much of a loss to the fault detection capability of
the system is required. Combinatorial testing provides the solution.

Combinatorial testing is based on the fact that many faults can be exposed by interactions involving
only a few input parameters. It creates tests by selecting values for input parameters and then
combining these values, such that every combination of values of any t parameters are covered by at

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received May 23, 2014; first revision September 17, 2014; accepted October 28, 2014; onlinefirst August 17, 2015.

Corresponding Author: Manuj Aggarwal (mmanuj.aggarwal@gmail.com)

* Dept. of Computer Science and IT, Netaji Subhas Institute of Technology, Delhi, India (ssab63@gmail.com, mmanuj.aggarwal@gmail.com)

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.04.0019 ISSN 2092-805X (Electronic)

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1090 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

least one test case. Here, t is referred to as the strength of coverage and usually takes a small value [2].
The notion of t-way testing can substantially reduce the number of tests. A system with 20 parameters
where each parameter can have 10 possible values requires 1020 tests for exhaustive testing; but only 180
tests for pairwise testing. Empirical studies have shown that t-way testing can effectively detect faults in
various types of applications [3].

For the generation of test cases from parameter combinations, various combinatorial objects are used,
such as Latin squares [4], orthogonal arrays [5], covering arrays [5,6], etc. Out of these, covering arrays
(CAs) are the most widely used. A CA (N, k, S, t) is an N×k matrix that takes values from a finite set S of
s symbols such that each N×t sub-matrix contains each possible t-tuple at least once, where N denotes
the number of test cases, k is the number of input parameters, and s is the number of values each
parameter can take. A mixed level covering array (MCA) (N, t, k, v1v2....vk) is an N×k matrix where each
column ci, for 1≤ i≤ k, can take values from the set (0, 1, ...vi-1), such that each N×t sub-matrix contains
each possible t-tuple at least once. Here, N denotes the number of test cases, k is the number of input
parameters, and vi is the number of values the parameter ci can take when 1≤ i≤ k. The matrix can also
be represented as MCA (N, t, s1

k1s2
k2.....sp

kp), which implies k1 parameters can have s1 values, k2
parameters can have s2 values, and so on. Thus, it is a matrix of N×k elements where each N×t sub-
matrix contains at least one occurrence of each t-tuple corresponding to the columns and [1].

A genetic algorithm (GA) is an evolutionary algorithm that has emerged as a practical, robust,
optimization technique and a search method. GA is inspired by the way species evolve in nature via
natural selection of the survival of the fittest individual [7]. The initial population is a set of possible
candidate solutions (individual or chromosome) for the problem. The fitness value of an individual is
calculated using the fitness function. A GA uses three operators, namely selection, crossover, and
mutation, to improve the solution. A GA stops when stopping criteria is satisfied (i.e., either the
solution is found or the maximum number of generations has taken place). The basic algorithm for a
GA is presented in Fig. 1.

Fig. 1. Basic algorithm of genetic algorithm.

In this paper, an approach for improving the performance of the GA is proposed. This proposed

approach is capable of covering all of the pairwise interactions of the input set in a lesser number of
generations. The performance of the GA is improved by improving the initial population and mutation
function. A comparative review of the techniques to generate CAs using the GA is presented.
Experimental results and a comparison of the proposed approach with an existing approach are also
presented. The rest of the paper is organized as follows: Section 2 gives a brief overview of the work that
has been done in this field. Section 3 describes the proposed approach to generate the optimal solution in a

Initialise (population)
Evaluate (population)
While (stopping criteria not satisfied)
{

Selection (population)
Crossover (population)
Mutation (population)
Replacement (population)
Evaluation (population)

}

∑
=

=

p

i

i
kk

1

)(

Sangeeta Sabharwal and Manuj Aggarwal

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 | 1091

lesser number of generations. Section 4 presents the experimental results and shows the effectiveness of the
proposed approach. Section 5 concludes the paper and directions for future work are discussed.

2. Related Work

In the literature on combinatorial testing, several effective methods exist for constructing (near) optimal
CAs. They are broadly classified into: mathematical methods, recursive methods, greedy methods,
metaheuristic methods, and hybrid methods. Mathematical methods use mathematical functions to
construct orthogonal arrays for test set generation [8]. Recursive methods require combinatorial objects of
specific dimensions to construct larger instances of combinatorial objects. Greedy algorithms include the
one-row-at-a-time approach and the In-Parameter-Order (IPO) algorithm. In the one-row-at-a-time
approach, a single row of the array is constructed at each step until all t-sets have been covered. Examples
include an automatic efficient test generator (AETG) [9] and the density-based greedy algorithm [10]. The
IPO algorithm generates all t-sets for the first t factors and then incrementally expands the solution, both
horizontally and vertically, until the array is complete [11]. Metaheuristic algorithms include tabu search
[6], simulated annealing [12], ant colony optimization (ACO) [13], particle swarm optimization (PSO)
[14,15], GA [16-22], Harmony Search [23,24], etc. The hybrid approach combines different methods to
efficiently generate a small test suite. The mathematical method can be combined with metaheuristics, or
greedy methods can be combined with mathematical methods to generate a test suite [25]. Next, GA
approaches for t-way testing are discussed.

Ghazi [16] has proposed a technique for generating pairwise test configurations. The fitness function
used for evaluating a chromosome is calculated as the number of distinct pairs covered by the
chromosome divided by the total number of possible pairwise interaction configurations. However, the
experimental data considered is simple. Moreover, the author has not discussed mutation and the
crossover operators used in the algorithm.

McCaffrey [17,22] has proposed a genetic algorithm for pairwise test sets (GAPTS) technique for
pairwise test case generation. For chromosome representation, integer array encoding is used. The
fitness function defined is the total number of distinct pairs captured by the individual chromosome.
Various GA parameter values defined are: population size, 20; selection method, roulette wheel
selection; crossover, single crossover point; mutation rate, 0.001, etc. GAPTS uses a form of elitism, in
which the individual with the highest fitness value in the population is immune from removal in each
generation. For immigration, an individual with randomly generated chromosomes is inserted into the
population after every 1,000 generations. The results obtained are comparable to or better than the
other five algorithms examined. However, the GAPTS program required more time to generate
pairwise test sets than other algorithms examined and the time to produce results increases with an
increase in the size of input.

Flores and Cheon [18] developed an open source tool called PWiseGen for generating pairwise test
sets. It is configurable, extensible, and reusable. The chromosome encoding used is integer array
encoding. The authors have defined two fitness functions of counting the number of different pairs and
penalizing for repeated pairs. The selection method used is roulette wheel selection. The crossover
variants defined are the single crossover point, single random crossover point, multiple crossover point,

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1092 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

and multiple random crossover point. The authors defined smart mutations, namely similarity
mutation, value occurrence mutation, and pair occurrence mutation. As per the experimental data,
PWiseGen shows comparable results with other approaches.

Table 1. Comparison of different test case generation approaches using GA

Reference t-way Fitness function GA parameters Main features Experimental results
Ghazi and
Ahmed [16]

Pairwise
test
cases

Number of distinct
pairs covered by
the chromosome
divided by total
number of possible
pairs

Proposed that GA
can be used to
generate t-way test
sets.

Experimental data
considered is simple.

McCaffrey
[17,22]

Pairwise
test
cases

Total number of
distinct pairs
captured by the
individual

Population size 20,
roulette wheel selection
method, single crossover
point, mutation rate
0.001, elitism,
immigration

Technique: GAPTS

Chromosome
representation:
integer array
encoding

Required more time
to generate test sets.

Takes longer time to
produce results as
input size increases.

Flores and
Cheon [18]

Pairwise
test sets

Counting the
number of
different pairs, and
penalising for
repeated pairs.

Roulette wheel selection
method

Crossover variants:
single, single random,
multiple, and multiple
random crossover point

Developed an open
source tool called
PWiseGen

Chromosome
encoding: integer
array encoding

Introduced smart
mutations

Execution time is not
considered.

Yalan et al.
[19]

 Systematically
examines the
impact of and
interactions
between GA’s five
configurable
parameters.

Elitism, lengthier
evaluation process
and creating fewer
mutated individuals
lead to better CA.

Values of parameters
considered are
discrete.

Shiba et al.
[20]

Test
cases for
t=2 and
t=3

Number of new t-
way combinations
that are covered by
the test case.

Tournament selection
method, elitism, uniform
crossover and mutation

Stopping criteria: when
the total number of
generated candidate tests
exceeds a given number.

Defined stagnation
condition to escape
from local minima.

Compaction
algorithm to
reduce the number
of test cases.

t-way test sets
generated are not
always optimal.

Bansal et al.
[21]

Pairwise
test
cases

Counting the
number of
different pairs

Crossover strategy:
crossover points are
selected by identifying
portion of chromosome
covering least number of
distinct pairs.

Initial solution:
Hamming distance

Results obtained are
fitter as compared to
existing approach.

GA=genetic algorithm, GAPTS=genetic algorithm for pairwise test sets, CA=covering array.

Sangeeta Sabharwal and Manuj Aggarwal

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 | 1093

Yalan et al. [19] designed three classes of experiments (i.e., pairwise, base choice and hill climbing) to
systematically examine the impact of and interactions among the GA’s five configurable parameters
(population size, number of generations, crossover probability, mutation probability, and GA variants).
It was observed that the selection methods (random selection of chromosomes and selecting inferior
and eliminating superior chromosomes) with elitism generate better configurations. Employing a
lengthier evaluation process improves the solution. Creating fewer mutated individuals leads to better
CA. However, the authors have considered discrete values for configuration parameters.

Shiba et al. [20] proposed a test generation algorithm for combinatorial testing based on the GA. The
fitness function calculates the number of new t-way combinations that are covered by the test case.
Stopping criteria is achieved when the total number of generated candidate tests exceeds a given
number. The selection operator used is tournament selection. An elite strategy is used to retain the best
chromosome in the population at each generation. Uniform crossover and mutation are performed. In
order to escape from local minima, the authors have defined stagnation condition that if there is no
improvement in the solution for a specified number of generations, then massive mutation is applied to
each position of every chromosome. A compaction algorithm is also proposed to improve the size of t-
way test set. The authors conducted some experiments to show the effectiveness of the proposed
algorithms. However, the t-way test sets generated are not always optimal.

Bansal et al. [21] proposed an approach to generate pairwise test cases using the GA. The authors
generated the initial solution using the Hamming distance. A new crossover strategy that selects
crossover points by identifying portions of the chromosome covering the least number of distinct pairs
was also proposed. A comparative study of the different t-way test set generation approaches using GAs
is summarized in Table 1.

As can be concluded from this literature survey, various approaches for t-way test set generation
using the GA have been proposed. Most of the approaches have generated (near) optimal test sets.
However, the time required to generate the t-way test set is considerably large. Thus, an approach that
generates optimal t-way test sets in a fewer number of generations is required. In PWiseGen [18], apart
from simple mutations, mutations specific to pairwise testing have also been defined. Hence, we aim to
define a GA that is customized to two-way testing and investigate its efficiency.

3. GA Based Pairwise Test Set Generation (Proposed Approach)

GAs have been used to solve a large set of problems in artificial intelligence, including test set
generation for pairwise testing. The basic GA improves the solution for a given problem by using
operators such as crossover, selection, and mutation.

The key features of the proposed approach are as follows. 1) It provides a method to create an
improved initial solution. 2) It offers a method that improves the value occurrences mutation. 3) It also
provides a method to improve the pair occurrences mutation. 4) It facilitates to use a mixture of
mutation methods.

The terminology used is defined as follows: A MCA (N, t, s1
k1s2

k2.....sp
kp) represents the test set M of

N×k size, where each column Pj (1≤ j≤ k) represents an input parameter and each row is a test case. An
element mi,j in matrix M can take a value from the set {0,1,...Vj-1} where, Vj is the possible values the jth

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1094 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

parameter can take. Thus, the parameter Pj can have a value from the set Sj={0,1,......Vj-1}, where, Vj is
the cardinality of the set Sj (1≤ j≤ k), N is the total number of test cases, and k is the total number of
input parameters.

3.1 Creating an Initial Population

In the case of combinatorial testing, a candidate solution (chromosome) is represented as a sequence

of test cases, where the count of test cases represents the CA number and the size of the test case is equal
to the total number of input parameters [18]. A test case contains one value corresponding to each
input parameter. For chromosome representation, integer array encoding is used as suggested in [18].
In a GA an initial solution can be generated randomly [18] or by using techniques such as Hamming
distance [21], Euclidean distance [6], etc.

In our proposed approach, an overlap coefficient (a similarity measure) is used to generate the initial
solution. An overlap coefficient measures the overlap between two sets and is defined as the set of
intersections divided by the smaller size of the two sets [26,27].

),min(

}{}{
),(

YX

YX
YXOverlap

I
=

 (1)

where, X and Y are sets. The algorithm for creating the initial population is described in Fig. 2.

Fig. 2. Algorithm for creating initial population.

First, a random test case is generated and added to the test set. Then, an iterative process is followed
in which P candidate test cases {tc1, tc2,......tcp} are generated, where the value of P is one third of the test
set size. Each tci, for 1≤ i≤ P, is compared with the test set already generated to calculate the overlap
coefficient using Eq. (1) where:

X= set of pairs covered by the test set already generated
Y= set of pairs covered by the test case tci, where, 1≤ i ≤ P.

The test case having a minimum overlap coefficient with the test set already generated is added to the
test set. The iterative process is repeated until the size of the test set already generated is less than N,
where N is the test set size to be achieved. The generated solution is better in terms of fitness value (i.e.,
covers a greater number of distinct pairs).

Begin
Generate a random test case.
Add that random test case to the test set.
While test set size is not achieved
{
• Randomly generate P test cases (tc1, tc2,tcP), where P =(test set size)/3.
• From the generated test case, select the test case having minimum overlap coefficient with

the test set already created.
• Add it to test set.
}
End

Sangeeta Sabharwal and Manuj Aggarwal

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 | 1095

3.2 Value Occurrences Mutation

Flores and Cheon [18] defined the value occurrences mutation as a mutation strategy that replaces a
duplicate value of a parameter in an individual (chromosome) with a missing value of that parameter.
An attempt has been made to improve the efficiency of the value occurrences mutation. The algorithm
is described in Fig. 3.

Fig. 3. Algorithm for improved value occurrences mutation.

For each parameter Pj (1≤ j≤ k), a Min_Value_Countj value is calculated, where:

Min_Value_Countj = max {{V1,V2.......Vk}-Vj} for 1≤ j≤ k (2)

It calculates the minimum number of times each value of a parameter must occur in order to cover all
of the value pairs with different values of other parameters. For each parameter Pj (1≤ j ≤ k), it calculates
the Min_Value_Countj by considering all the parameters P1, P2,.....Pk, excluding parameter Pj. Then, for
the remaining k-1 parameters, their corresponding Vm value is identified, where Vm is the number of
possible values for parameter Pm (1≤ m ≤ k). The highest numeric Vm value is assigned to the
Min_Value_Countj. Thus, for each parameter, the Min_Value_Count is calculated. It then identifies a
value of parameter Pj, whose occurrence is less than the Min_Value_Countj for that parameter. Then,
for that parameter, the highest occurring value is identified and replaced with the value whose
occurrence is less than the Min_Value_Count for that parameter.

For example, for the problem of MCA (N, 2, 413221), parameter P1 can have four values (a, b, c, d),
parameter P2 can have three values (e, f, g), parameter P3 can have three values (h, i, j), and parameter P4
can have two values (k, l). Thus, the values of V1, V2, V3 and V4 are 4, 3, 3, and 2, respectively. Using Eq.
(2), the Min_Value_Count for P1 is 3, and for P2, P3, and P4 is 4. Thus, each value of P1 must occur at
least three times in order to form all possible pairs with three different values of P2 and P3 each.

Table 2 shows the MCA (N, 2, 413221). Here, each value of P1 occurs at least three times and each value
of P2, P3 and P4 occurs at least four times. This is in conformation with our calculation of the
Min_Value_Count value. While generating the solution, if an intermediate matrix contains three
occurrences of “e” and five occurrences of “f,” then value occurrences mutation first computes the
Min_Value_Count for each parameter. Then, it identifies the value “e,” as its occurrences are less than
the Min_Value_Count for parameter P2. Then for parameter P2 it identifies a value whose occurrences
are greater than the Min_Value_Count and is highest, which in this case is value “f.” Finally, it replaces
one occurrence of “f” with “e.”

• Begin
• Identify the value of Min_Value_Count for each parameter using (2).
• Identify a parameter’s value whose occurrence is less than Min_Value_Count for that parameter.
• Identify a value for the identified parameter whose occurrence is highest among the possible

values for the parameter.
• Replace the highest occurring value with a value having occurrence less than Min_Value_Count for

that parameter.
• End

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1096 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

Table 2. Mixed covering array for (N, 2, 413221)
P1 P2 P3 P4
a e h k
a f i l
a g j k
b e i l
b f h k
b g j l
c f j k
c e h l
c g i k
d e j l
d f i k
d g h l

The value occurrences mutation improves the solution for the first few generations. When all of the
occurrences of values are greater than or equal to their corresponding Min_Value_Count, then the
mutation does not change the solution. Furthermore, an attempt has been made to improve the
solution by changing the structure of the solution. The algorithm is described in Fig. 4.

Fig. 4. Algorithm for improving structure of the solution in value occurrences mutation.

An uncovered pair (valuei, valuej) (i.e., a value pair not covered in the test set is identified). Here,
valuei ϵ Si of parameter Pi and valuej ϵ Sj of parameter Pj, and 1≤ i< j≤ k, (i.e., in the test case Pi) appears
before Pj. A test case tcm (1≤ m≤ N) is identified where the value of Pi is valuei. Then, another test case
tcn (1≤ n≤ N) is identified where value of Pj is valuej. The genes of tcm and tcn are interchanged from
gene location i+1 till location j. Thereby, the resultant test set covers the pair (valuei, valuej) without
there being much of a loss to the existing covered pairs.

3.3 Pair Occurrences Mutation

Flores and Cheon [18] have defined the pair occurrences mutation as a mutation strategy that
replaces a duplicate pair in an individual with a missing pair of the same parameters. We have
attempted to improve the pair occurrences mutation. The algorithm is presented in Fig. 5.

The shortcoming of the existing approach is the loss of the distinct pairs already covered, as the
values that are being replaced might be contributing to the distinct pairs covered. Our proposed method
attempts to reduce the loss of the existing distinct pairs covered. All of the values in the test set that are
not covering a distinct pair have been identified. A value pair (valuei, valuej) having no occurrence in
the test set was then identified. Here, valuei ϵ Si of parameter Pi and valuej ϵ Sj of parameter Pj, and 1≤

• Begin
• Identify an uncovered pair (valuei, valuej) where valuei ϵ Si of parameter Pi and valuej ϵ Sj

of parameter Pj, and 1≤ i< j≤ k.
• Identify a test case tcm (1≤ m ≤ N) where value of Pi is valuei.
• Identify another test case tcn (1≤ n ≤ N) where value of Pj is valuej.
• Interchange the genes of tcm and tcn from gene location i+1 till location j.
• End

Sangeeta Sabharwal and Manuj Aggarwal

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 | 1097

{i, j} ≤ k and i ≠ j. Then a test case tcl (1≤ l≤ N) is identified in which either or both of the values
corresponding to parameters Pi and Pj are not covering a distinct pair. Then, the value corresponding to
parameters Pi and Pj in the test case tcl is replaced with the valuei and valuej, respectively.

Fig. 5. Algorithm for improved pair occurrences mutation.

For example, for the problem of MCA (N, 2, 413221), parameter P1 can have four values (a, b, c, d),

parameter P2 can have three values (e, f, g), parameter P3 can have three values (h, i, j), and parameter P4
can have two values (k, l). The total pairs to be covered are 53. To demonstrate our method, consider
the test set given in Fig. 6. First, all of the values in the test set that are not covering a distinct pair are
identified. The evaluation starts from test case tc1 and continues from left to right (i.e., first, “a” in tc1 is
evaluated and then “e” in tc1 and it continues until “k” in tc7). It is observed in tc6 that the value “l” does
not contribute to the distinct pairs covered by the test set, as the pair “bl” is already covered by tc2, “gl”
by tc3, and “jl” by tc3. Similarly, “a” and “e” in tc7 also do not contribute a distinct pair. Thus, value “l” in
tc6 and values “a” and “e” in tc7 are identified. Next, for the given test set, uncovered pairs are identified.
These are af, ag, aj, be, bh, bk, ce, cf, ch, ck, ci, df, dg, di, dj, dl, ej, fh, fj, fk, gh, gi, gk, hl, and jk. From these
uncovered pairs, a pair is selected at random. The cases explained below may arise.

Aehk bfil cgjl dehk aeil bgjl aeik

tc1 tc2 tc3 tc4 tc5 tc6 tc7

Fig. 6. Test set for the problem of mixed level covering array (N, 2, 413221).

Case 1: The uncovered pair “fh” is selected. Here, “f” belongs to parameter P2 and “h” belongs to
parameter P3. The next step is to identify a test case in which at least one of the values for parameters P2
and P3 are not covering a distinct pair. As can be seen, no test case exists for which the values for P2 and
P3 are marked. For tc7 the value of P2 is marked. Thus, the values of P2 and P3 are replaced in tc7 by “f”
and “h,” respectively.

Case 2: Uncovered pair “cf” is selected. Here “c” belongs to parameter P1 and “f” belongs to parameter
P2. The next step is to identify a test case in which at least one of the values for parameters P1 and P2 are
not covering a distinct pair. As can be seen, the tc7 values of P1 and P2 are marked. Thus, the values of P1
and P2 are replaced in tc7 by “c” and “f,” respectively.

Thus, the proposed approach helps to reduce the loss of pairs already covered by the test set.

• Begin
• Identify all the values in the test set which are not covering a distinct pair
• Select an uncovered pair (valuei, valuej), where valuei ϵ Si of parameter Pi and valuej ϵ Sj of

parameter Pj, and 1≤{ i, j} ≤ k and i≠j.
• Identify a test case in which at least one of the values for parameter Pi and Pj are not

covering a distinct pair.
• Replace the value corresponding to parameter Pi and Pj in the test case with valuei and

valuej respectively.
• End

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1098 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

3.4 Use of Mixture of Mutation Methods

In the proposed approach, a combination of three mutation methods, namely simple mutation, value
occurrences mutation, and pair occurrences mutation, is used. In simple mutation, the gene to be
replaced is randomly selected and its value is replaced with a valid random value for that gene location.
For the first ¼ of the maximum possible generations, the value occurrences mutation is used. For the
initial generations, where the initial solution may have missed certain values from the solution, the
value occurrences mutation improves the results. Afterwards, until ¾ of the maximum possible
generations, mutation method to be used is simple mutation is used. At that stage, in most of the cases,
98% coverage (in terms of total pairs) is achieved, leaving only a few uncovered pairs. Then, pair
occurrences mutation that selectively finds an uncovered pair and tries to fix it in the test set without
there being much of a loss to the existing pairs covered is used.

4. Experimental Results

The proposed approach has been implemented using the open source tool of PWiseGen [18]. It is
implemented in Java programming language and generates test cases for pairwise testing using GA. A
series of experiments were conducted in order to empirically evaluate the effectiveness of the
proposed approach. The performance was evaluated using the following six benchmark problems of
different sizes: 34, 313, 415317229, 41339235, 2100, and 1020, where ab means “b” input parameters have “a”
distinct possible values. These six benchmark problems were input to PWiseGen with an existing
approach, as described in [18], and to our improved approach. The effectiveness of both of the
approaches were measured in terms of percentage coverage (pairs covered out of total pairs) versus
the generation number. An approach that achieves higher percentage coverage in a fewer number of
generations is considered to be better. In order to analyze the effect of the initial solution and the
mutation strategy, we kept other factors, such as population size, mutation rate, crossover strategy,
etc. as the same for both of the approaches. Each approach was executed 30 times for each
benchmark problem. The results obtained were averaged and plotted on a graph where the x-axis
represents the generation number and the y-axis represents the percentage coverage. The results are
summarized in Fig. 7. As can be analyzed from the graphs, our proposed approach achieves higher
coverage in a fewer number of generations in all of the cases. Table 3 represents the size of the test set
obtained for the six benchmark problems. It does so by using the proposed approach and existing
approaches of the pairwise test set generation in the following work by Flores and Cheon
(PWiseGen) [18], McCaffrey (GAPTS) [17], and Shiba et al. [20]; and other approaches such as
AETG [9], which generates test sets using the greedy approach; by Chen et al. [14] using PSO; and
Shiba et al. [20] using ACO. As can be seen, GA approaches give comparable results to other
approaches taken under consideration. However, for Problem 6, AETG [9] generates better results.
On examining GA approaches, it is observed that the proposed approach generates comparable
results to other approaches using GA. Moreover, for the problem of size 41339235, the size of the MCA
has been reduced from 26 to 25 using the proposed approach.

Sangeeta Sabharwal and Manuj Aggarwal

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 | 1099

Table 3. Results of the performance of proposed approach compared with the existing approaches of
Pairwise test set generation for the six benchmark problems

 Total
pairs

Proposed
approach

PWiseGen
[18]

GAPTS
[17]

GA
[20]

AETG
[9]

ACO
[20]

PSO
[14]

Problem 1 (34) 54 9 9 9 9 9 9 9

Problem 2 (313) 702 15 15 15 17 17 17 18

Problem 3 (415317229) 14026 34 34 35 37 41 37 38

Problem 4 (41339235) 17987 25 26 27 27 28 27 27

Problem 5 (2100) 19800 10 10 10 12 10 13 13

Problem 6 (1020) 19000 220 220 196 227 194 225 213

GAPTS=genetic algorithm for pairwise test sets, GA=genetic algorithm, AETG=automatic efficient test generator, ACO=ant
colony optimization, PSO=particle swarm optimization.

Fig. 7. Comparison of the proposed approach and existing approach for the six benchmark problems.

%
 C

o
v

er
ag

e

Generation number

Problem 1

Existing Approach

Proposed Approach

%
 C

o
v

er
ag

e

Generation number

Problem 2

Existing Approach

Proposed Approach

%
 C

o
v

er
ag

e

Generation number

Problem 3

Existing Approach

Proposed Approach %
 C

o
v

er
ag

e

Generation number

Problem 4

Existing Approach

Proposed Approach

%
 C

o
v

er
ag

e

Generation number

Problem 5

Existing Approach

Proposed Approach

%
 C

o
v

er
ag

e

Generation number

Problem 6

Existing Approach

Proposed Approach

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1100 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

5. Conclusion

In this paper, a survey of the techniques generating t-way test sets from a GA has been conducted. It
has been observed that the GA generates (near) optimal test sets. Mutation methods that are
customized to pairwise testing have also been proposed by the researchers. We were motivated by these
mutation methods, as we believe that a customized mutation method will generate results in a fewer
number of generations, as compared to the simple mutation method. We have proposed algorithms
that can improve these mutation methods, namely value occurrences mutation and pair occurrences
mutation. Moreover we improved the performance of the algorithm by creating an input solution using
a similarity matrix—the overlap coefficient. Lastly, rather than using a single mutation method, we used
a combination of three mutation methods to mutate the solution. It can be concluded from the results
that the proposed approach generates solutions with higher percentage coverage in a fewer number of
generations. Moreover, the size of MCA (N, 2, 75, 41339235) was reduced from 26 to 25 using the
proposed approach. As for future work, we will further investigate the efficiency of the GA after
customizing it to t-way testing. Moreover, we will extend our approach for the generation of higher
strength t-way test cases.

References

[1] A.P. Mathur, Foundations of Software Testing, 1st ed. Delhi, India: Pearson Education, 2008, pp. 309-315.
[2] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG system: an approach to testing based

on combinatorial design,” IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437-443, 1997.
[3] Combinatorial Testing, http://www.combinatorialtesting.com/.
[4] A. Hartman, “Software and hardware testing using combinatorial covering suites,” in Graph Theory,

Combinatorics and Algorithms. New York, NY: Springer, 2005, pp. 237-266.
[5] G. Sherwood, “On the construction of orthogonal arrays and covering arrays using permutation groups,” 2004;

http://testcover.com/pub/background/cover.htm.
[6] L. Gonzalez-Hernandez, N. Rangel-Valdez, and J. Torres-Jimenez, “Construction of mixed covering arrays of

strengths 2 through 6 using a tabu search approach,” Discrete Mathematics, Algorithms and Applications, vol. 4,
no. 3, 2012.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed. Reading, MA:
Addison-Wesley, 1989, pp. 1-22.

[8] K. A. Bush, “Orthogonal arrays of index unity,” Annals of Mathematical Statistics, vol. 23, no. 3, pp. 426-434, 1952.
[9] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The combinatorial design approach to automatic test

generation,” IEEE Software, vol. 13, no. 5, pp. 83–88, 1996.
[10] R. C. Bryce, C.J. Colbourn, and M.B. Cohen, “A framework of greedy methods for constructing interaction test

suites,” in Proceedings of the 27th International Conference on Software Engineerin, New York, 2005, pp. 146–155.
[11] J. D. McCaffrey, “Generation of pairwise test sets using a genetic algorithm,” in Proceedings of 33rd Annual IEEE

International Computer Software and Applications Conference (COMPSAC ’99), Seattle, WA, 2009, pp. 626-631.
[12] Y. Lei and K. C. Tai, “In-parameter-order: a test generation strategy for pairwise testing,” in Proceedings of 3rd

IEEE International High-Assurance Systems Engineering Symposium, Washington, DC, 1998, pp. 254-261.
[13] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved meta-heuristic search for constrained interaction

testing,” in Proceedings of the 1st International Symposium on Search Based Software Engineering, Windsor, UK,
2009, pp. 13-22.

Sangeeta Sabharwal and Manuj Aggarwal

J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017 | 1101

[14] X. Chen, Q. Gu, X. Zhang, and D. Chen, “Building prioritized pairwise interaction test suites with ant colony
optimization,” in Proceedings of IEEE 9th International Conference on Quality Software (QSIC’09), Jeju, Korea,
2009, pp. 347-352.

[15] X. Chen, Q. Gu, J. Qi, and D. Chen, “Applying particle swarm optimization to pairwise testing,” in Proceedings of IEEE
34th Annual Computer Software and Applications Conference (COMPSAC), Seoul, Korea, 2010, pp. 107-116.

[16] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Application of particle swarm optimization to uniform and variable
strength covering array construction,” Applied Soft Computing, vol. 12, no. 4, pp. 1330-1347, 2012.

[17] S. A. Ghazi and M. A. Ahmed, “Pair-wise test coverage using genetic algorithms,” in Proceedings of the 2003
Congress on Evolutionary Computation (CEC'03), Canberra, Australia, 2003, pp. 1420-1424.

[18] J. D. McCaffrey, “An empirical study of pairwise test set generation using a genetic algorithm,” in Proceedings of
7th International Conference on Information Technology: New Generations (ITNG), Las Vegas, NV, 2010, pp.
992-997.

[19] P. Flores and Y. Cheon, “PWiseGen: generating test cases for pairwise testing using genetic algorithms,”
in Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE),
Shanghai, China, 2011, pp. 747-752.

[20] L. Yalan, C. Nie, J. M. Kauffman, G. M. Kapfhammer, and H. Leung, “Empirically identifying the best genetic
algorithm for covering array generation,” presented at 3rd International Symposium on Search Based Software
Engineering, Szeged, Hungary, September 10-12, 2011.

[21] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life techniques to generate test cases for combinatorial
testing,” in Proceedings of the 28th Annual International Computer Software and Applications Conference
(COMPSAC’04), Hong Kong, 2004, pp. 72-77.

[22] P. Bansal, S. Sabharwal, S. Malik, V. Arora, and V. Kumar, “An approach to test set generation for pair-wise
testing using genetic algorithms,” in Proceedings 5th International Symposium on Search Based Software
Engineering (SSBSE2013), St. Petersburg, Russia, 2013, pp. 294-299.

[23] J. D. McCaffrey, “Generation of pairwise test sets using a genetic algorithm,” in Proceedings of 33rd Annual IEEE
International Computer Software and Applications Conference (COMPSAC’99), Seattle, WA, 2009, pp. 626-631.

[24] A. R. A. Alsewari and K. Z. Zamli, “Design and implementation of a harmony-search-based variable-strength
t-way testing strategy with constraints support,” Journal of Information and Software Technology, vol. 54, no. 6,
pp. 553-568, 2012.

[25] A. R. A. Alsewari and K. Z. Zamli, “A harmony search based pairwise sampling strategy for combinatorial
testing,” International Journal of the Physical Sciences, vol. 7, no. 7, pp. 1062-1072, 2012.

[26] M. B. Cohen, C. J. Colbourn, and A. C. Ling, “Constructing strength three covering arrays with augmented
annealing,” Discrete Mathematics, vol. 308, no. 13, pp. 2709-2722, 2008.

[27] Overlap coefficient, http://en.wikipedia.org/wiki/Overlap_coefficient.

Sangeeta Sabharwal http://orcid.org/0000-0003-4693-213X

She is currently working as Professor and Head of the Department for Information
Technology at Netaji Subhas Institute of Technology in Delhi, India. Her areas of
interest are Software Engineering, Metamodeling, Object Oriented Analysis, Software
Testing, and Data warehousing. Currently she is actively involved in applying
different Soft Computing Techniques to different areas of software engineering,
mainly in the area of testing. She has published papers in several international
journals and conferences. She has also written a book on software engineering.
Numbers of students are pursuing their Ph.D. under her guidance.

Test Set Generation for Pairwise Testing Using Genetic Algorithms

1102 | J Inf Process Syst, Vol.13, No.5, pp.1089~1102, October 2017

Manuj Aggarwal http://orcid.org/0000-0003-1650-8629

He obtained B.Tech. degree in Computer Science Engineering from University
School of Information Technology, Guru Gobind Singh Indraprastha University,
Delhi and M.Tech. degree in Information Systems from Netaji Subhas Institute of
Technology (NSIT), Delhi. Currently, he is pursuing Ph.D. from NSIT, Delhi. His
areas of interests are Software Engineering, Software Testing, Object Oriented
Modeling and Technology, Programming Languages, Model-based Testing, Domain
Specific Modeling and Applications of Soft Computing in Software Testing.

