

www.kips.or.kr Copyright© 2017 KIPS

Hierarchical Location Caching Scheme for Mobile
Object Tracking in the Internet of Things

Youn-Hee Han*, Hyun-Kyo Lim*, and Joon-Min Gil**

Abstract
Mobility arises naturally in the Internet of Things networks, since the location of mobile objects, e.g., mobile
agents, mobile software, mobile things, or users with wireless hardware, changes as they move. Tracking their
current location is essential to mobile computing. To overcome the scalability problem, hierarchical
architectures of location databases have been proposed. When location updates and lookups for mobile
objects are localized, these architectures become effective. However, the network signaling costs and the
execution number of database operations increase particularly when the scale of the architectures and the
numbers of databases becomes large to accommodate a great number of objects. This disadvantage can be
alleviated by a location caching scheme which exploits the spatial and temporal locality in location lookup. In
this paper, we propose a hierarchical location caching scheme, which acclimates the existing location caching
scheme to a hierarchical architecture of location databases. The performance analysis indicates that the
adjustment of such thresholds has an impact on cost reduction in the proposed scheme.

Keywords
Internet of Things, Location Caching Scheme, Location Tracking, Mobile Computing, Mobile Object

1. Introduction
In current mobile computing systems, many users with wireless hardware are not tied to a fixed

access point but move wide-area wireless network. Furthermore, mobile software, i.e., data and code
which move in Internet system, constitutes a new form of distributed and mobile application [1,2]. The
mobile software agents are a popular form of such application [3-5]. In Internet of Things (IoT)
networks of physical objects that contain embedded technology (such as intelligent sensors), there are
some efforts to support intelligence environment for controlling moving things or objects [6,7]. One of
the key issues in mobile computing is to economically and quickly transfer any form of information
between any desired locations at any time for mobile objects. That is the reason why the efficient
location tracking mechanism becomes one of the most important problems for the Internet of Things
networks as well as mobile networks [8,9].

A mobile object performs location update to explicitly create or update its location record in specific
location databases. When there is a need to locate a mobile object, the network performs location
lookup by querying the object’s record to search the current location of the mobile object. As the

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received August 12, 2016; first revision February 21, 2017; accepted March 4, 2017.

Corresponding Author: Joon-Min Gil (jmgil@cu.ac.kr)

* Advanced Technology Research Center, Korea University of Technology and Education, Cheonan, Korea ({yhhan, glenn89}@koreatech.ac.kr)
** School of Information Technology Engineering, Catholic University of Daegu, Gyeongsan, Korea (jmgil@cu.ac.kr)

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.03.0081 ISSN 2092-805X (Electronic)

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1411

number of objects keeps increasing, the amount of signaling traffic and database operation associated
with the need to track mobile objects keeps growing.

One among efforts reducing loads upon signaling network and location databases is to adopt
hierarchical arrangement of the location databases [8-11]. Since the hierarchical database structures
manage the mobile objects in a distributed way, these structures are more responsive and more reliable
for the increasing mobile objects. In this paper, we focus on a wide-area mobile computing, i.e., the
location tracking service should allow mobile objects to be located anywhere in the world, and be able
to support a huge number of objects. To accommodate such vast scalability problem, the structural
hierarchy of location databases need to be expanded to arbitrary �-level.

The hierarchical structure is more effective particularly when most location update and lookup are
localized. In such cases, instead of contacting the remote location database that is usually existed far
away from an object’s current location, a small number of location databases in the object’s
neighborhood are accessed. In many cases, objects can be located by querying some databases in the
hierarchy. However, it is noted that the execution number of database operations caused by location
update and lookup can rather increase, since only one location update or lookup request to go through
many databases deployed in network. Furthermore, the network signaling costs also increase
particularly when the scale of the structure becomes large to accommodate a great number of objects.

Such disadvantage can be alleviated by introduction of location caching scheme in the hierarchical
architecture. Location caching is based on the idea of reusing the information about an object’s location
from the previous lookup to that object. This leads to reduce network signaling and database loads of
the basic strategy in exchange for increased CPU processing cost and hard-disk (or memory)
consumption. Since technology trends are driving the costs down, deploying the caching strategy on a
system-wide basis will become increasingly attractive [9,11].

The key scheme we present is the use of hierarchical location caching information. With this, the
proposed hierarchical location caching scheme exploits the information to fast lookup an object and
reduce the signaling traffic and the number of database accesses.

A cache entry has to be removed from the cache after it is deemed less useful. The longer the time a
mobile object has not been looked up from a cache database, the higher the chance that the
corresponding cache entry is not correct (i.e., the mobile object moves to another place and the cache
entry points to a wrong location for it). So, the proposed scheme also supports a hierarchical cache
invalidation strategy in order to invalidate less useful cache entry. In this strategy, each cache entry is
invalidated after its associated threshold amount of time since its last usage. That is, the thresholds are
used as a guide to select one of the hierarchical cache information.

This paper is organized as follows. In section II, we will review and describe the selected related work.
In Section III, we will describe the hierarchical location caching scheme in detail. In Section IV, we will
describe a new random walk model reflecting a N-level hierarchical database architecture and
demonstrate our scheme’s cost reduction in terms of the network signaling and database loads. Finally,
in Section V, we will conclude this paper.

2. Related Works

The hierarchical location schemes [8-11] maintain a hierarchy of location databases and have been
proposed in order to localize location update and lookup operations geographically. Usually, a

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1412 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

hierarchical location management strategy arranges the location databases in a tree-like structure (see
Fig. 1). From the root, the databases in each level of the hierarchy form finer and finer partitions of the
total coverage area. In this case, the location database at a leaf serves a single specific region, such as
registration area, and contains entries for all objects currently roaming in the region. A database at an
internal node maintains information about objects roaming in the coverage area of its descendant
databases. For each mobile objects, the information is a pointer to an entry at a lower level database.
The hierarchical structure leads to reductions in signaling cost when most location update and lookup
are localized. In such cases, instead of contacting a remote database that may be located far away from
the object’s current location, a small number of location databases in the object’s neighborhood are
accessed. In addition, there is no need for binding an object to a remote database, since the object can
be located by querying one of the databases in the hierarchy.

Fig. 1. Hierarchical location database architecture.

Location caching is based on the idea of reusing the information about an object’s location obtained

from the previous lookup. The strategy we discuss in this paper acclimates the existing studies [12-15]
to the �-level hierarchical arrangement of databases. Even though the studies have been done to be
applied to Personal Communication Systems (PCSs), we just use the basic concept of algorithms, and
then augment and adjust them to systems supporting a huge number of mobile objects (or agents) in a
hierarchical manner.

Basically, every time an object � is found, �’s location is cached at its nearby database, so that any
subsequent lookup to � can reuse this information. Clearly, caching is useful for those objects who
receive lookups frequently relative to the rate at which they move since no traffic is associated with
queries in case of cache hit. However, in case of cache miss, extra overhead is paid. Further the cache
entries must be invalidated and various approaches have been proposed. In eager caching, every time an
object moves to a new location, all cache entries for that object’s location are updated. Thus, the cost of
move operations increases for those objects whose address is cached. In lazy caching, the cached

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1413

location for a given object is updated only in case of a cache miss. The basic overhead involved in lazy
caching is in case of cache miss since the cached location must be visited first. An improvement to this
work was presented in [13], where a caching scheme based on fully disseminating the location updates
of mobiles to every node is shown to yield higher cache hit rates.

In [12], the authors investigated the classes of objects for which the caching strategy yields net
reductions in signaling traffic and database loads using the notion of object’s Local Call to Mobility
Ratio (LCMR). LCMR is the ratio between the number of lookups originating from a local region to the
number of times the object changes its service area. They derived the LCMR threshold, the minimum
LCMR required for caching to be beneficial assuming incoming lookups are a Poisson process and
inter-move times are exponentially distributed. In [15], caching techniques was adopted in hierarchical
architecture to exploit locality. The proposed caching strategy exploited a pair of bypass pointers and
presented an eager caching.

A cache entry has to be removed from the cache after it is deemed less useful. The longer the time an
object has not been looked up from a cache database, the higher the chance that the corresponding
cache entry, if cached, is not correct (i.e., points to a wrong location for the mobile object). In [14], a
cache invalidation approach called �-threshold location caching scheme was proposed. In this scheme,
a cache entry is invalidated after a threshold amount of time � since its last usage. That is, the threshold � is used as a guide to select the subset of objects to which the cache information should be applied.

3. Hierarchical Location Caching Scheme

3.1 Basic Hierarchical Location Management

Fig. 2. Our system model.

Fig. 2 presents a �-level tree structure used as our system model. The choice of the tree structure

given by the network graph may depend on traffic and mobility patterns within the network. Let � � ��, 	
 be the tree, where � ∈ � corresponds to a node which has a location database containing
entries for objects in the subtree rooted at the node, and
 � ��, �
 ∈ 	 is the bidirectional

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1414 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

communication link between two connected nodes � and �. Each object is addressed by a universally
unique identifier (e.g., object handles in [8,11]). Each node is of the form 〈�, �〉, where � indicates that
the node is in level � of the tree (In our model, higher level of nodes is marked by higher value) and y
represents the �th node in level � (1 � � � �). Each parent knows its children nodes. The nodes in
each level of the hierarchy form finer and finer partitions of the total coverage area. A node 〈�, �〉 serves
a single registration area which consists of several finer registration areas managed by nodes in the
subtree rooted at the node.

 (a) (b)

Fig. 3. Basic hierarchical location management. (a) Location update and (b) location lookup.

Movement of an object must be accompanied by updates in the appropriate databases. Let the set of

ancestors and descendants of a node in the tree be defined in the usual manner. Let ����〈�, �〉, 〈�, �〉

denote the lowest common ancestor of node 〈�, �〉 and node 〈�, �〉. Fig. 3(a) represents the location
update procedure when an object moves from node 〈1,1〉 to node 〈1,4〉. Node 〈1,4〉 accepts the object
by entering its identifier in the registration list of database within the node, and then, on the tree’s way,
a message is sent up with the information that the object has moved to node 〈1,4〉. Each node
encountered by this message, if the database in the node does not already have an entry for the object,
adds an entry for the object which points to the previous node on the path of the message. This message
finally encounters a node at which database already has an entry for the object. It is the ����〈1,1〉, 〈1,4〉
 � 〈3,1〉. This node terminates the upward message, and initiates a downward
message on the tree’s way up to node 〈1,1〉, telling databases encountered on the way to erase their
pointer entries for the object.

Requests for location lookup can arrive, or be generated at, any leaf node 〈�, �〉 in the network, and a
callee is registered at any leaf node 〈�, �〉. If the callee is registered at the originating node, location
lookup occurs with only one access at the database. If the callee is not registered at the originating
database (that is, 〈�, �〉 � 〈�, �〉), the location lookup is routed up on the tree’s way. Fig. 3(b) represents
the location lookup procedure when a caller in node 〈1,3〉 requests a location lookup into a callee in
node 〈2,3〉. Both node 〈2,2〉 and node 〈3,1〉 encountered along the upward route look up the entry
corresponding to the callee. The node at which database holds the entry is the ����〈1,3〉, 〈2,3〉�
 〈4,1〉.

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1415

And then, the location lookup follows a chain of downward pointers to the node at which the callee is
finally registered; the downward chain consists of nodes 〈4,1〉, 〈3,2〉 and 〈2,3〉.

3.2 Hierarchical Location Caching Scheme

In this section, we propose our hierarchical location caching scheme. The application of this scheme
perfectly fits the proposed hierarchical structure of location databases. When a caller sends a location
lookup message for a callee and the lookup procedure is completed, the cache database of the caller’s
leaf node records the entire downward chain of nodes which register the callee currently. In order to
make the proposed scheme efficient, we introduce the hierarchical thresholds. In the chain, each node is
associated with one threshold. These thresholds are used to exploit spatial locality of a mobile object
and support cache invalidation.

If a caller was located at node 〈�, �〉 and a callee � was found in node 〈�, 	〉 in the latest location
lookup event, the cache of the node 〈�, �〉 keeps a record (a chain of pointers) for the callee � in its
database. Also, we define
�,� as the level of ��
(〈�, �〉, 〈�, 	〉). Then, the record includes two fields as
follows.

� ��: the time of the latest lookup to �
� �: the list of (�� ,��) pairs serving � at time ��. In the pair, �� is the node which registers � at

level �, and �� is the threshold associated with �� for 1 ≤ � ≤
�,� .

The list � arranges (�� ,��) pairs from lower level to higher level. Note that there is no threshold
correspondent to ���,� in the list and �� < ���� for 1 ≤ � ≤
�,� − 1.

For example, with Fig. 4, consider that the caller at node 〈1,1〉 requests a location lookup for callee A
at node 〈1,4〉 at time ‘19h 15m 57s, 2015-01-20’. After the lookup procedure has finished, the callee’s
cache information stored at node 〈1,1〉 has the request time as �� ’s value and the list
�: {�〈1,4〉, 10��, �〈2,3〉, 34��, �〈3,2〉, 57��, �〈4,1〉, −�} . After another location lookup procedure
requested for callee � in node 〈2,7〉 has finished, the cache record is also depicted at the figure.

Suppose that, at time �, a new location lookup to the callee � arrives at a leaf node. Let us assume the
caller’s leaf node has the cache information for the callee � and the pairs ���,���, �����,�����, …, ��	
�,�	
��, ��	 , −� have been in the list �, where 1 ≤ � < � ≤ �. Then, the proposed scheme is
described as follows:

Case 1. If � − �� ≤ �� , the cached �� is selected as a location hint which indicates the node serving �.
 Case 1.1. After the node �� is queried, if � is found (a location hit occurs), �� is assigned the value �.
 Case 1.2. Otherwise (a location miss occurs), Case 3 takes place.
Case 2. If ��
� < � − �� ≤ �� , where � < � < �, then the cached �� is selected as a location hint

which indicates the node serving the callee. Otherwise (that is, � − �� > �	
�), the cached �	 is selected
as a location hint

 Case 2.1. After the selected node is queried, if � is found, it is assumed that � is in the subtree
rooted at the node. The location lookup follows a chain of downward pointers until reaching the lowest
node at which � is located. And then, �� is assigned the value �. If some of the followed nodes are
different with ones in the list � of cache information, the list � is updated with the founded nodes.

 Case 2.2. Otherwise (� is not found at the selected node), Case 3 takes place.

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1416 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

Case 3. When a location miss occurs at Case 1 and Case 2, the location lookup continues up from the
node where the location miss takes place. On finding the node which registers �, the location lookup
follows a chain of downward pointers from the node until reaching the lowest node at which � is
located. After location lookup procedure has finished, the new downward chain including nodes
registering � is assigned to the list � and ! is assigned the value !.

It is apparent that the lookup cost is low if Case 1.1 or Case 2.1 occurs. On the other hand, Case 1.2

or Case 2.2 results in an extra penalty for the cost since the additional procedure, Case 3, is required. If
a mobile object moves infrequently and shows high spatial locality, location hits are frequent.
Otherwise, location misses are frequent.

With Fig. 4, let us consider that a caller at node 〈1,1〉 requests a location lookup for a callee A. As
depicted in Fig. 4, the cache information for the callee A is assumed to be already managed at the node 〈1,1〉. Suppose that the request happens at time ‘19h 20m 14s, 2015-01-20’. In the case, since the
difference between the stored previous lookup time ‘19h 15m 57s, 2015-01-20’ and the current request
time is below the first threshold ‘10m’, the node 〈1,4〉 is selected and directly queried (Case 1). If the
callee � is found at the node (Case 1.1), ! is assigned the request time and the procedure comes to an
end.

Fig. 4. Cache information in hierarchical location caching scheme.

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1417

If the callee
 has moved to a neighboring node 〈1,5〉 prior to the lookup, it is not found at the
selected node (Case 1.2). In this case, the node 〈2,3〉, which is the parent of the node 〈1,4〉, is queried.
Since the callee
’s entry is not found at the node 〈2,3〉, the node 〈3,2〉, which is the parent of the node 〈2,3〉, is also searched. Since the entry in the node 〈3,2〉’s database has a pointer for the callee
, the
lookup procedure continues down until reaching the lowest node 〈1,5〉 at which the callee
 is located.
After the procedure has finished, the list � is updated with two new nodes, 〈1,5〉 and 〈2,4〉, instead of
the existing nodes, 〈1,4〉 and 〈2,3〉. Finally, �� is assigned the request time (Case 3).

4. Performance Analysis

In this section, we use a �-level balanced tree structure of location databases for simplicity of
performance analysis, although an arbitrary tree architecture was exploited for describing our scheme
in the previous section. Moreover, we add an additional condition into the system model: root node and
all internal nodes have � children. So, we can define the �/� balanced tree structure of location
databases, ��/�, as the �-level balanced tree structure satisfying the additional conditions. A tree ��/�

has total �
�
�

�
�
 nodes (databases), where there are �� − 1 leaf nodes. In the ��/� , let �
� be a

registration area in level �, � − 1 where 1 ≤ � ≤ �. �
� is the smallest registration area in level 1 and
has no sub-registration area. For 2 ≤ � ≤ �, an �
� has � sub-registration areas. The mathematical
expression for an �
� is as follows:

�
� =��
�
��

�

�
�

 (1)

where �
�
�� is �th registration area in level � − 1. Also, we assume the homogeneous network of which
all registration areas in same level have the same shape and size.

Let ���� be i.i.d. (independently and identically distributed) random variable representing the
residence time of an �
� . Let ����(�) be the density function of ���� . ���� is random variable
representing the residence time of the lowest node �
�, and its density function is ����(�).

We assume that ���� has a Gamma distribution with mean 1/�(= �������), standard deviation ,
and variance !(= �). The Gamma distribution is selected for its flexibility and generality. By selecting
the proper values for the parameters, a Gamma distribution can be an Exponential, an Erlang or a Chi-
square distribution. A Gamma distribution can also be used to represent the distribution for a set of
measured data. The Laplace transform of the Gamma distribution is

����∗ ��� = " #�� + #�$
�

,%ℎ�&� # = 1!�� (2)

For 2 ≤ � ≤ �, suppose that an object visits ��
�
�s in an �
� for a period ����� . During ����� , the

object resides at 	th �
�
� for a period ��. Then, ����� = �� + �� +⋯+ �� has the following density
function:

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1418 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

����

������ � � � …� ������
����������

����…������
���	��������

�� 	 �� 	⋯	 ��	��

	
�	⋯	
���

����

	
�

��

��

���	�…������ (3)

Using the Laplace transform convolution, we can get the Laplace transform for "���

����!
 as follows:

"���

���∗�#
 � $"�����

∗ �#
%� . (4)

where "�����

��� �#
 is the Laplace transform of "�����
�!
.

Fig. 5. Mesh 4 ' (��
) registration area *��	
s in an *��.

We describe a two-dimensional random walk model for mesh planes in order to compute the area

residence time density function. Our model is similar to one proposed by [16] and considers a regular
hierarchical area overlay structure. We assume that an object resides in an *�� for a period and moves
to one of its four neighbors with the same probability, i.e., with probability 1/4. Recursively from this
assumption, for 2 � � � � ' 1, we also can say that an object resides in an *�� for a period and moves
to one of other four neighbor *�� with probability 1/4. For 2 � � � �, an *�� is referred to as an) ' (��
) if it overlays with 4)� ' 4) , 1�� *
 *��	
s. Fig. 5 shows the 4 ' (��
) *�� overlaying 49 *��	
s in ��/��. *��	
 at the center of *�� is called the (��
)	0. *��	
s that surround the (��
)	# ' 1 *��	
s are called (��
)	#. In an) ' (��
) *�� , *��	
s that surround the (��
)) ' 1 *��	
s are
referred to as boundary neighbors, which are outside of the *��.

According to the equal moving probability assumption, we classify *��	
s in an *�� into several
types. An *��	
 type is of the form $�, �%, where � indicates that the *��	
 is in layer � and �

represents the � , 1st type in layer �. *��	
s of the same type have the same traffic flow pattern
because they are at the symmetrical positions on the mesh area. Fig. 5 illustrates the type of *��	
s for a 4 ' (��
) *��.

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1419

In the random walk model of an & −
�'�& �
�, a state ((, ') represents that an object is in one of
the �
�
�s of type [(, ']. In & −
�'�& �
�, the state (&,) represents that the object moves out of the
area from state (& − 1,), where 0 ≤ 	 ≤ 2& − 3. For 0 ≤ 	 ≤ 2& − 3, states (&,) are absorbing, the
others are transient. For & > 1, the total number)(&) of states for random walk of & −
�'�& �
� is
&� + r − 1. The transition matrix of this random walk is an)(&) ×)(&) matrix * = (�(�,�)(��,��)). For
0 ≤ 	 ≤ 2& − 3, �(�
�,�)(�,�) is the probability that an object moves from an �
�
� of the type [& − 1,]
to a neighbor out of the area �
� in one step. The absorbing state (&,) loops back to itself with
probability 1.

For � ≥ 1, we use the Chapman-Kolmogorov equation to compute the probability �(�) for the
number of steps that an object moves from an �
�
� type to another. An element �

(�,�)(��,��)

(�) in �(�) is
the probability that the random walk moves from state ((, ') to state ((�,'�) with exact � steps. For
0 ≤ 	 ≤ 2& − 3, define ��,��,����,�� as

��,��,����,�� = + ���,����,�� , �,& � = 1
���,����,��(�)

− ���,����,��(�
�)
, �,& � > 1. (5)

Then, ��,��,����,�� is the probability that an object initially resides at an �
�
� of the type [(, '], moves

into an �
�
� of the type [& − 1,] at the �-1st step, and then moves out of the �
� at the �th step.
Let .(�
�,�)	be the probability that an object enters the �
� through an �
�
� of the type [& − 1,] at

the first step and ./(�
�,�) be the probability that an object moves out of the �
 through an �
 of the
type [& − 1,] at the last step. Then, for & ≥ 2, we have

./(�
�,�) = 0 0.(�
�,�)��,��,����,��
�

�
�

��
�

�
�

 (6)

0 ./��
�,��
��
�

�
�

= 1 (7)

Each term of the right side of Eq. (6) represents the probability that an object initially resides at an

�
�
� of the type [& − 1,] and leaves the �
� from an �
�
� of the type [& − 1,] at the �th step. For
& > 1, the following equations hold

1.(�
�,�) = ./(�
�,�) 		 				.(�
�,�) = ./(�
�,��
�
�), �,& 0 < 	 ≤ 2& − 3 (8)

From Eqs. (6)–(8), we can get a linear system and a particular solution for .(�
�,�). For a 4 −
�'�&

�
�, we have .(�,�) ≃ 28.571% and .(�,�) ≃ 14.285% for 0 ≤ 	 ≤ 5. For a 5 −
�'�& �
�, we have
.(�,�) ≃ 22.222% and .(�,�) ≃ 11.111% for 0 ≤ 	 ≤ 7 . For the two �
� 	 structures, we use 500
truncated terms in Eq. (6) to approximate the infinite summations. The error for the truncation is
within 10
��.

For & ≥ 2 and 2 ≤ � ≤ �, from Eqs. (3) and (4), the Laplace transform of residence time density

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1420 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

function "���
��
 for an) ' (��
) *�� is as follows.

"���

∗ �#
 � / / / 0��	
,����,��	
,����,��"���

���∗�#
��	�

���

��	�

���

�

��

			 � / / / 0��	
,����,��	
,����,�� ∙ 2"�����

∗ �#
3���	�

���

��	�

���

�

��

 (9)

For) 4 2, from the moment generation property, the expected residence time of a registration area is

as follows:

E$!���
% � / / / 0��	
,����,��	
,����,��6�7
��	�

���

��	�

���

.�

��

 (10)

where

6�7
 � �'1
72"�����

∗ �0
3�	
 9"�����

∗ �#
9# :
���

 (11)

Since the residence time density function for an) ' (��
) *�� is defined recursively in Eq. (9), we
can get the recursive definition of residence time density function for) ' (��
) registration areas in ��/�, where R � 4)� ' 4r , 1, as follows.

"���

∗ �#
 �
=>
?
>@ A BC# , BCD

� 		 			�" � � 1, E!F
)G�#

/ / / 0��	
,����,��	
,����,�� ∙ 2"�����

∗ �#
3���	�

���

��	�

���

�

��

8 (12)

4.1 Probabilities for Each Case of the Hierarchical Location Caching Scheme

Fig. 6. The relationship among !�, !���

 and !̃���
.

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1421

This section proposes probabilities in connection with the hierarchical location caching scheme. Let
��	be an i.i.d. random variable, which represents the time interval between two consecutive location
lookups directed from an �
� to a remote object �. Let �̃��� be the time interval between the previous
location lookup for � and the time when � moves out of the �
�. The relationship among ��, ���� and
�̃��� is given in Fig. 6. Let ��(�) and �3���(�) be the density function of �� and �̃��� , respectively.

We assume that the arrivals of location lookup request for an object are a Poisson process and
�[��] = 1/��. From the assumption, we have

����� = ���
���

(13)

Since the incoming location lookup requests are random observers of ���� for all � (which is referred
to as the excess life theorem [17]), we have the density function of �̃��� as follows.

�3������ = 1�[����]4 ����(5)
�

�
�

65 (14)

From [18], we can get the Laplace transform for the �̃��� distribution as follows.

�3���∗ ��� = 4 �
���3������6�
�

�
�

		 =
1�[����] �1 − �3���∗ ����. (15)

The probability that an object moves no �
� between two consecutive location lookups is derived as
follows.

Pr��� < �̃���� = 4 4 ����

��
�

�
����3�������6��6��
�

��
�

		 = 1 −
1�[����]�� �1 − ����∗ �����.

(16)

Let us assume that, after the latest location lookup to an object �, the cache information at the leaf

node 〈1, �〉 indicates that the object � resides at a leaf node 〈1, 	〉 at the present time (In this analysis, we
use complete balanced tree. Therefore, the level of a leaf node is always one). Also, we define
�,� as the
level of ��
�〈1, �〉, 〈1, 	〉�.

Let 7� be the probability of the cache hit with threshold ��. That is, 7� is the probability for Case 1.1
presented in the hierarchical location caching scheme. From conditions given by Case 1.1, we have

 7� = Pr[�� < �̃���] ⋅ Pr[�� ≤ ��]
																	 = 81 − ��� 91 − " #��� + #�$

�:; ⋅ <1 − �
����=. (17)

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1422 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

Let >� be the probability of the cache miss with threshold ��. That is, >� is the probability for Case 1.2

presented in the proposed scheme. From conditions given by Case 1.2, we have

>� = Pr[�� ≥ �̃���] ⋅ Pr[�� ≤ ��]
=

��� 91 − " #��� + #�$
�: ⋅ <1 − �
����=. (18)

For 1 < � <
�,�, let 7� be the probability of the cache hit with threshold �� . From conditions given

by Case 2.1, we have
 7� = Pr[�� < �̃��] ⋅ Pr[��
� ≤ �� ≤ ��]
																																	 = 81 − 1�[���]�� �1 − ���	∗ �����; ⋅ <�
���	
� − �
���	=. (19)

On the other hand, when � =
�,�, we have

7��,� = Pr[�� < �̃����,�] ⋅ Pr [���,�
� < ��]
																		 = ?1 − 1�[�����,�]�� @1 − �����,�∗ ����AB ⋅ �
�����,�
� .

(20)

For 1 < � <
�,�, let >� be the probability of the cache miss with threshold �� . From conditions given

by Case 2.2, we have

>� = Pr[�� ≥ �̃��] ⋅ Pr[��
� ≤ �� ≤ ��]
														 =

1�[���]�� �1 − ���	∗ ����� ⋅ <�
���	
� − �
���	=. (21)

On the other hand, when � =
�,�, we have

>��,� = Pr[�� > �̃����,�] ⋅ Pr[���,�
� < ��]
=

1�[�����,�]�� @1 − �����,�∗ ����A ⋅ �
�����,�
� .

(22)

Since Case 3 indicates the behaviors following after Case 1.2 or Case 2.2 occurs, we need not

consider a probability for the case. All probabilities proposed in Eqs. (17)–(22) sum up to 1.

0�7� + >�� = 1
��,�

�
�

.

(23)

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1423

4.2 Network Cost Analysis

This section proposes the network cost analysis of the hierarchical location caching scheme using the
probabilities presented by the above subsection. We assume that there are shortcuts between interior
nodes. Since the network costs of hierarchical location lookup caching scheme through shortcuts
depend on the network architecture, we evaluate the benefits using diverse values of the network
parameters. Also, we assume that a location notification to caller or caller’s node after a successful
lookup takes the same costs in both caching scheme and non-caching scheme and the costs are not
included into our analysis.

Firstly, we normalize the network cost to send a message between a parent node and a child node into
C. Consider the remote access to a callee � at node 〈1, 	〉 from a caller at node 〈1, �〉. Let ��� be the
network cost to send a message through a shortcut between 〈1, �〉 and a node of level �, where
1 < � <
�,��. The node of level � is one of ancestors of 〈1, 	〉. We assume that the value of ��� is always
� times as low as that of the cost which does not use a shortcut. If a shortcut is not used, a message goes
to the node of level � from 〈1, �〉 via ��
�〈1, �〉, 〈1, 	〉�. For � ≥ 1, each ��� is defined as follows.

��� =
�,� − 1 +
�,� − �� ⋅ C.

(24)

Let � � be the network cost of a location lookup when �� is used as the cache information and a cache

hit occurs. When a node �� between �� and ���,� is used as the cache information, there is additional
cost � − 1, which brings out when the location lookup follows a chain of downward pointers from ��
until reaching the lowest node where the callee is located. Therefore, � � can be defined as follows.

� � = ��� + (� − 1) ⋅ C.

(25)

Let �!� be the network cost of a location lookup when �� is used as the cache information and a cache
miss occurs. When a cache miss takes place, the lookup continues up from the node where the miss
takes place until finding a node storing an entry for the callee, and down to the lowest node where the
callee is located. Therefore, �!� can be defined in ��/� as follows.

�!� = ��� + 0 *&[�̃���
�
< �� ≤ �̃���] ⋅ (ℎ − � + ℎ − 1) ⋅ C

�

���

																														= ��� + 0 1 − ����
�

∗ (��)�[����
�
]�� 81 − 1 − ����∗ (��)�[����]�� ; ⋅ (ℎ − � + ℎ − 1) ⋅ C

�

���

.

(26)

Therefore, the network cost in the hierarchical location caching scheme can be defined as

Ω� =0(7� ⋅ � � + >� ⋅ �!�)
��,�

�
�

.

(27)

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1424 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

On the other hand, the network cost of non-caching scheme is defined as follows.

Ω� � 2J ⋅ �(�,� ' 1
. (28)

Since threshold values affect the performance of the proposed scheme, it is important to determine
the values. A threshold reflects a forecasted residence time at the found area after last location lookup.
In this analysis, therefore, the values are assumed to be proportional to the expected residence time of
the associated registration area. For 1 � 7 L (�,�, we use the threshold weighting factor M and select the
values as follows.

�� � 	$!���
% ⋅ M. (29)

 (a) (b) (c) (d)

Fig. 7. Relative network cost ratios (Ω
/Ω�). (a) λ� � 0.3, (b) λ� � 0.7, (c) λ� � 1.5, and (d) λ� � 2.5.

Fig. 7 depicts the variation of network cost ratio Ω
/Ω� with respect to various values of M, λ�, and (�,� . The values of parameters used in the numerical results are as follows: C � 1.0, � � 5,) � 4

(hence, * � 49), Q � 1/C, R � 2, and J � 1. The results show that the network cost reduction of
hierarchical location caching scheme becomes high when the frequency λ� of location lookup becomes
high. Also, the network cost reduction becomes relatively high when the lowest common ancestor
between caller and callee is near at the root of the proposed tree architecture (i.e. when (�,� is high). The
cost of the caching scheme even becomes higher than that of non-caching scheme when (�,� � 2 and
threshold weighting factors are more than 1.3 (when λ� � 0.3) or 3.0 (when λ� � 0.7). In the other
hand, the cost reduction of up to 45% is achieved when λ� � 2.5 and (�,� � 4. In the case λ� � 0.3 and λ� � 0.7, the most cost reduction is shown when the weighting factors are roughly 0.3 and 0.4,
respectively (although we cannot say which value makes the cost reduction maximum when (�,� � 2).
We also can see that the network cost ratio is regular irrespectively of the weighting factor when λ� is
high. That is, the efficiency of the caching scheme is high and regular regardless of the weighting factor
value if lookup rate is high.

Fig. 8 shows the effect of the standard deviation Q (or variance) for the residence time !���

distribution on network cost. Except λ�, (�,� and Q, the values of other parameters used in this numerical
results are the same as ones used in Fig. 7. We can observe that the network cost reduction becomes
large as Q increases. That is, for the same expected value of !���

, more long residence times will be
observed as the standard deviation increases. More long residence times imply that more cache hits
occur. Thus, more cost reduction is observed. Also, we can see that the threshold weighting factor has
significant impact on cost reduction when lookup rate is low.

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1425

 (a) (b)
Fig. 8. The effect of the standard deviation for !���

 distribution on network cost ratio (Ω
/Ω�). (a)
λ� � 0.5, ��,� � 3. (b) λ� � 2.0, ��,� � 3.

Fig. 8 shows the effect of the standard deviation Q (or variance) for the residence time !���

distribution on network cost. Except λ�, (�,� and Q, the values of other parameters used in this numerical
results are the same as ones used in Fig. 7. We can observe that the network cost reduction becomes
large as Q increases. That is, for the same expected value of !���

, more long residence times will be
observed as the standard deviation increases. More long residence times imply that more cache hits
occur. Thus, more cost reduction is observed. Also, we can see that the threshold weighting factor has
significant impact on cost reduction when lookup rate is low.

4.3 Database Cost Analysis

In this section, we are interested in discovering the reduction in database costs obtained by the
hierarchical location caching scheme. The number of database operations caused by a location lookup
increases in the hierarchical structure of location databases. In such environment, the caching scheme
can reduce the number of database operations by bypassing quite many databases to lookup the
location of a callee. Database costs are not under the influence of underlying network structure, which
is contrasted with network costs. The only one which has impact on database costs is the number of
query and write operations during a location lookup and update.

For a given database (including the cache database), we normalize both a query cost and a write cost
into U and B, respectively. Let ̂�� be the database cost of a location lookup when �� is used as the cache
information and a cache hit occurs. Prior to location database queries, it is required to query the cache
database in the node where a caller exists. After querying the database in the cached node, other queries
are performed to the databases in nodes within a chain of pointers from the selected node �� to the
lowest node where the callee exists. Finally, the update to the cache database is required. So, from this
procedure, ̂�� can be defined as follows.

 ̂�� � �7 , 1
 ⋅ U , B. (30)

Let ̂�� be the database cost of a location lookup when �� is used as the cache information and a cache
miss occurs. When a cache miss takes place, the lookup continues up from the node where the miss
takes place until finding a node storing an entry for the callee, and down to the lowest node where the
callee is located. So, ̂�� can be defined in ��/� as follows.

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1426 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

 ̂�� � U , B , / W)$!̃�����
L !� � !̃���

% ⋅ �F ' 7 , F ' 1
 ⋅ U�

����

																														� U , B , / 1' "�����

∗ �C�
	$!�����
%C� X1 ' 1 ' "���

∗ �C�
	$!���
%C� Y ⋅ �F ' 7 , F ' 1
 ⋅ U�

����

.
 (31)

Therefore, the database cost in the hierarchical location caching scheme can be defined as

Z
 � /�[� ⋅ ̂�� , \� ⋅ ̂��

��,�

��

. (23)

On the other hand, the database cost of non-caching scheme is defined as follows.

Z� � 2U ⋅ �(�,� ' 1
. (23)

 (a) (b) (c) (d)

Fig. 9. Relative database cost ratios (θ
/θ�). (a)	λ� � 0.3, (b) λ� � 0.7, (c) λ� � 1.5, and (d) λ� � 2.5.

Fig. 9 depicts the variation of database cost ratio θ
/θ� with respect to various values of M, λ�, and (�,� .

The values of parameters used in the numerical results are as follows: C � 1.0, � � 5,) � 4 (hence, * � 49), Q � 1/C, and U � B � 1. The results are similar to ones related to network costs. It is shown
that the database cost reduction of hierarchical location caching scheme becomes high when the
frequency λ� of location lookup becomes high. The cost reduction becomes relatively high when (�,� is
high. When (�,� � 2, for the most part of λ� and M, the cost of the caching scheme even becomes higher
than that of non-caching scheme. This is because the caching scheme requires additional location
database query when location miss occurs and non-caching scheme itself does not need to access many
databases when (�,� is so low. On the other hand, it is noted that the cost reduction of up to 55% is
achieved when λ� � 2.5 and (�,� � 4. In the case λ� � 0.3 and λ� � 0.7, the most cost reduction is
shown when the threshold weighting factors are roughly 1.0 and 1.2, respectively (although we cannot
say which value makes the cost reduction maximum when (�,� � 2). We also can see that the database
cost ratio is regular irrespectively of the weighting factor when λ� is high. That is, the efficiency of the
caching scheme is high and regular regardless of the weighting factor value if lookup rate is high.

Fig. 10 shows the effect of the standard deviation Q (or variance) for the residence time !���

distribution on database cost. We can observe that the database cost reduction becomes large as Q
increases. Also, we can know that the weighting factor has significant impact on cost reduction when
lookup rate is low.

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1427

 (a) (b)
Fig. 10. The effect of the standard deviation for !���

 distribution on database cost ratio (θ
/θ�). (a)
λ� � 0.5, ��,� � 3. (b) λ� � 2.0, ��,� � 3.

5. Conclusions

In the future systems accommodating a vast number of potentially mobile objects in the Internet of
Things, it is required to locate a mobile object to communicate. Finding locations of mobile objects
contributes significant traffic to the network and puts much overload to location databases.

Two distinct but related topics were addressed in this paper. The first was the hierarchical location
caching scheme supporting cache invalidation in a hierarchical architecture of location databases. The
idea is to use the cache to store the location information which is used as a hint to locate the mobile
objects, and to invalidate some corrupt cache by using the hierarchical threshold values. It was
proposed to reduce location lookup costs in terms of the network signaling and database loads. In order
to analyze performance of the proposed scheme, we designed a new random walk model reflecting
hierarchical architecture. From the performance evaluation, we found the following facts: 1) the
proposed scheme can reduce the network and database costs in most cases; 2) the cost reduction
becomes high and regular irrespectively of various threshold values when λ� is high; 3) the cost
reduction also becomes high when the called object is located far from the originator of lookup request;
4) the cost reduction also becomes high as the standard deviation Q of the lowest area’s residence time
increases.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2016R1D1A3B03933355),
and also supported by the Graduate School Research Program of KOREATECH.

References

[1] K. Rothermel, S. Schnitzer, R. Lange, F. Durr, and T. Farrell, “Context-aware and quality-aware
algorithms for efficient mobile object management,” Pervasive and Mobile Computing, vol. 8, no. 1, pp.
131-146, 2012.

Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things

1428 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017

[2] J. Vitek and C. Tschudin, “Mobile object systems: towards the programmable Internet,” in Lecture Notes
in Computer Science, vol. 1222, Heidelberg, Germany: Springer, 1997.

[3] G. P. Gupta, M. Misra, and K. Garg, “An energy efficient distributed approach-based agent migration
scheme for data aggregation in wireless sensor networks,” Journal of Information Processing Systems, vol.
11, no. 1, pp. 148-164, 2015.

[4] P. Morreale, “Agents on the move mobile software agents,” IEEE Spectrum, vol. 35, no. 4, pp. 34-41, 1998.
[5] L. Vasiu and Q. H. Mahmoud, “Mobile agents in wireless devices,” IEEE Spectrum, vol. 37, no. 2, pp. 104-

105, 2004.
[6] K. Gao, Q. Wang, and L. Xi, “Controlling moving object in the internet of things,” International Journal

of Advancements in Computing Technology, vol. 4, no. 5, pp. 83-90, 2012.
[7] L. E. Talavera, M. Endler, I. Vasconcelos, R. Vasconcelos, M. Cunha, and F. J. da Silva e Silva, “The

mobile hub concept: Enabling applications for the internet of mobile things,” in Proceedings of the IEEE
International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops),
St. Louis, MO, 2015, pp. 123-128.

[8] M. van Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum, “Locating objects in wide-area systems,”
IEEE Communications Magazine, vol. 36, no. 1, pp. 104-109, 1998.

[9] E. Pitoura and G. Samaras, “Locating objects in mobile computing,” IEEE Transactions on Knowledge
and Data Engineering, vol. 13, no. 4, pp. 571-592, 2001.

[10] E. Pitoura and I. Fudos, “Distributed location databases for tracking highly mobile objects,” The
Computer Journal, vol. 44, no. 2, pp. 75-91, 2001.

[11] A. Baggio, G. Ballintijn, M. van Steen, and A. S. Tanenbaum, “Efficient tracking of mobile objects in
Globe,” The Computer Journal, vol. 44, no. 5, pp. 340-353, 2001.

[12] R. Jain, Y. B. Lin, C. N. Lo, and S. Mohan, “A caching strategy to reduce network impacts of PCS,” IEEE
Journal on Selected Areas in Communications, vol. 12, no. 8, pp. 1434-1445, 1994.

[13] K. Ratnam, I. Matta, and S. Rangarajan, “Analysis of caching-based location management in personal
communication networks,” in Proceedings of the 7th International Conference on Network Protocols,
Toronto, Canada, 1999, pp. 293-300.

[14] Y. B. Lin, “Determining the user locations for personal communications services networks,” IEEE
Transactions on Vehicular Technology, vol. 43, no. 3, pp. 466-473, 1994.

[15] R. Jain and F. Anjum, “Caching in hierarchical user location databases for PCS,” in Proceedings of the
IEEE International Conference on Personal Wireless Communication, Jaipur, India, 1999, pp. 496-500.

[16] I. F. Akyildiz, Y. B. Lin, W. R. Lai, and R. J. Chen, “A new random walk model for PCS networks,” IEEE
Journal on Selected Areas in Communications, vol. 18, no. 7, pp. 1254-1260, 2000.

[17] S. M. Ross, Stochastic Processes, 2nd ed, New Delhi, India: Wiley, 1995.
[18] Y. B. Lin, “Reducing location update cost in a PCS network,” IEEE/ACM Transactions on Networking, vol. 5, no.

1, pp. 25-33, 1997.

Youn-Hee Han http://orcid.org/0000-0002-5835-7972

He received B.S. degree in Mathematics from Korea University, Seoul, Korea, in 1996.
He received his M.S. and Ph.D. degrees in Computer Science and Engineering from
Korea University in 1998 and 2002, respectively. From March 4, 2002 to February 28,
2006, he was a senior researcher in the Next Generation Network Group of Samsung
Advanced Institute of Technology. Since March 2, 2006, he has been a Professor in
the School of Computer Science and Engineering at Korea University of Technology

Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1429

and Education, Cheonan, Korea. His primary research interests include theory and
application of mobile computing, including protocol design and mathematical
analysis. Since 2002, his activities have focused on mobility management, media
independent handover, and cross-layer optimization for efficient mobility support.
His research topics also include mobile sensor/actuator networks, social network
analysis, and deep learning. He has published approximately 150 research papers on
the theory and application of mobile computing, and has filed 30 patents on ICT
(Information and Communication Technology) domain. He has been serving as an
editor for Journal of Information Processing Systems (JIPS) since August 2011. In
addition, he has also made several contributions in IETF and IEEE standardization,
and served as the co-chair of s working group in Korea TTA IPv6 Project Group.

Hyun-Kyo Lim

He received B.S. degree in Computer Science and Engineering from Korea University
of Technology and Education, in 2015. He received M.S. degree in School of
Computer Science and Engineering from Korea University of Technology and
Education, in 2017. His research interests include mobile communication and
mobility management. Since 2016, his activities have focused on Software Defined
Network (SDN), future internet, and machine learning.

Joon-Min Gil http://orcid.org/0000-0001-6774-8476

He received his B.S. and M.S. degrees in Computer Science from Korea University,
Korea in 1994 and 1996, respectively. He received his Ph.D. degree in Computer
Science and Engineering from Korea University, Korea in 2000. Before joining in
School of Information Technology Engineering, Catholic University of Daegu, he was
a senior researcher in Supercomputing Center, Korea Institute of Science and
Technology Information (KISTI), Daejeon, Korea from October 2002 to February
2006. From June 2001 to May 2002, he was a visiting research associate in the
Department of Computer Science at the University of Illinois at Chicago, USA. His
recent research interests include cloud computing, big data computing, distributed
and parallel computing, and wireless sensor networks.

