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Abstract 
Mobility arises naturally in the Internet of Things networks, since the location of mobile objects, e.g., mobile 
agents, mobile software, mobile things, or users with wireless hardware, changes as they move. Tracking their 
current location is essential to mobile computing. To overcome the scalability problem, hierarchical 
architectures of location databases have been proposed. When location updates and lookups for mobile 
objects are localized, these architectures become effective. However, the network signaling costs and the 
execution number of database operations increase particularly when the scale of the architectures and the 
numbers of databases becomes large to accommodate a great number of objects. This disadvantage can be 
alleviated by a location caching scheme which exploits the spatial and temporal locality in location lookup. In 
this paper, we propose a hierarchical location caching scheme, which acclimates the existing location caching 
scheme to a hierarchical architecture of location databases. The performance analysis indicates that the 
adjustment of such thresholds has an impact on cost reduction in the proposed scheme. 
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1. Introduction 
In current mobile computing systems, many users with wireless hardware are not tied to a fixed 

access point but move wide-area wireless network. Furthermore, mobile software, i.e., data and code 
which move in Internet system, constitutes a new form of distributed and mobile application [1,2]. The 
mobile software agents are a popular form of such application [3-5]. In Internet of Things (IoT) 
networks of physical objects that contain embedded technology (such as intelligent sensors), there are 
some efforts to support intelligence environment for controlling moving things or objects [6,7]. One of 
the key issues in mobile computing is to economically and quickly transfer any form of information 
between any desired locations at any time for mobile objects. That is the reason why the efficient 
location tracking mechanism becomes one of the most important problems for the Internet of Things 
networks as well as mobile networks [8,9]. 

A mobile object performs location update to explicitly create or update its location record in specific 
location databases. When there is a need to locate a mobile object, the network performs location 
lookup by querying the object’s record to search the current location of the mobile object. As the 
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number of objects keeps increasing, the amount of signaling traffic and database operation associated 
with the need to track mobile objects keeps growing. 

One among efforts reducing loads upon signaling network and location databases is to adopt 
hierarchical arrangement of the location databases [8-11]. Since the hierarchical database structures 
manage the mobile objects in a distributed way, these structures are more responsive and more reliable 
for the increasing mobile objects. In this paper, we focus on a wide-area mobile computing, i.e., the 
location tracking service should allow mobile objects to be located anywhere in the world, and be able 
to support a huge number of objects. To accommodate such vast scalability problem, the structural 
hierarchy of location databases need to be expanded to arbitrary �-level. 

The hierarchical structure is more effective particularly when most location update and lookup are 
localized. In such cases, instead of contacting the remote location database that is usually existed far 
away from an object’s current location, a small number of location databases in the object’s 
neighborhood are accessed. In many cases, objects can be located by querying some databases in the 
hierarchy. However, it is noted that the execution number of database operations caused by location 
update and lookup can rather increase, since only one location update or lookup request to go through 
many databases deployed in network. Furthermore, the network signaling costs also increase 
particularly when the scale of the structure becomes large to accommodate a great number of objects. 

Such disadvantage can be alleviated by introduction of location caching scheme in the hierarchical 
architecture. Location caching is based on the idea of reusing the information about an object’s location 
from the previous lookup to that object. This leads to reduce network signaling and database loads of 
the basic strategy in exchange for increased CPU processing cost and hard-disk (or memory) 
consumption. Since technology trends are driving the costs down, deploying the caching strategy on a 
system-wide basis will become increasingly attractive [9,11]. 

The key scheme we present is the use of hierarchical location caching information. With this, the 
proposed hierarchical location caching scheme exploits the information to fast lookup an object and 
reduce the signaling traffic and the number of database accesses. 

A cache entry has to be removed from the cache after it is deemed less useful. The longer the time a 
mobile object has not been looked up from a cache database, the higher the chance that the 
corresponding cache entry is not correct (i.e., the mobile object moves to another place and the cache 
entry points to a wrong location for it). So, the proposed scheme also supports a hierarchical cache 
invalidation strategy in order to invalidate less useful cache entry. In this strategy, each cache entry is 
invalidated after its associated threshold amount of time since its last usage. That is, the thresholds are 
used as a guide to select one of the hierarchical cache information. 

This paper is organized as follows. In section II, we will review and describe the selected related work. 
In Section III, we will describe the hierarchical location caching scheme in detail. In Section IV, we will 
describe a new random walk model reflecting a N-level hierarchical database architecture and 
demonstrate our scheme’s cost reduction in terms of the network signaling and database loads. Finally, 
in Section V, we will conclude this paper. 

 
 

2. Related Works 

The hierarchical location schemes [8-11] maintain a hierarchy of location databases and have been 
proposed in order to localize location update and lookup operations geographically. Usually, a 
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hierarchical location management strategy arranges the location databases in a tree-like structure (see 
Fig. 1). From the root, the databases in each level of the hierarchy form finer and finer partitions of the 
total coverage area. In this case, the location database at a leaf serves a single specific region, such as 
registration area, and contains entries for all objects currently roaming in the region. A database at an 
internal node maintains information about objects roaming in the coverage area of its descendant 
databases. For each mobile objects, the information is a pointer to an entry at a lower level database. 
The hierarchical structure leads to reductions in signaling cost when most location update and lookup 
are localized. In such cases, instead of contacting a remote database that may be located far away from 
the object’s current location, a small number of location databases in the object’s neighborhood are 
accessed. In addition, there is no need for binding an object to a remote database, since the object can 
be located by querying one of the databases in the hierarchy. 

 

 
Fig. 1. Hierarchical location database architecture. 

 
Location caching is based on the idea of reusing the information about an object’s location obtained 

from the previous lookup. The strategy we discuss in this paper acclimates the existing studies [12-15] 
to the �-level hierarchical arrangement of databases. Even though the studies have been done to be 
applied to Personal Communication Systems (PCSs), we just use the basic concept of algorithms, and 
then augment and adjust them to systems supporting a huge number of mobile objects (or agents) in a 
hierarchical manner. 

Basically, every time an object � is found, �’s location is cached at its nearby database, so that any 
subsequent lookup to � can reuse this information. Clearly, caching is useful for those objects who 
receive lookups frequently relative to the rate at which they move since no traffic is associated with 
queries in case of cache hit. However, in case of cache miss, extra overhead is paid. Further the cache 
entries must be invalidated and various approaches have been proposed. In eager caching, every time an 
object moves to a new location, all cache entries for that object’s location are updated. Thus, the cost of 
move operations increases for those objects whose address is cached. In lazy caching, the cached 
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location for a given object is updated only in case of a cache miss. The basic overhead involved in lazy 
caching is in case of cache miss since the cached location must be visited first. An improvement to this 
work was presented in [13], where a caching scheme based on fully disseminating the location updates 
of mobiles to every node is shown to yield higher cache hit rates. 

In [12], the authors investigated the classes of objects for which the caching strategy yields net 
reductions in signaling traffic and database loads using the notion of object’s Local Call to Mobility 
Ratio (LCMR). LCMR is the ratio between the number of lookups originating from a local region to the 
number of times the object changes its service area. They derived the LCMR threshold, the minimum 
LCMR required for caching to be beneficial assuming incoming lookups are a Poisson process and 
inter-move times are exponentially distributed. In [15], caching techniques was adopted in hierarchical 
architecture to exploit locality. The proposed caching strategy exploited a pair of bypass pointers and 
presented an eager caching. 

A cache entry has to be removed from the cache after it is deemed less useful. The longer the time an 
object has not been looked up from a cache database, the higher the chance that the corresponding 
cache entry, if cached, is not correct (i.e., points to a wrong location for the mobile object). In [14], a 
cache invalidation approach called �-threshold location caching scheme was proposed. In this scheme, 
a cache entry is invalidated after a threshold amount of time � since its last usage. That is, the threshold � is used as a guide to select the subset of objects to which the cache information should be applied. 

 
 

3. Hierarchical Location Caching Scheme 

3.1 Basic Hierarchical Location Management 
 

 

Fig. 2. Our system model. 
 
Fig. 2 presents a �-level tree structure used as our system model. The choice of the tree structure 

given by the network graph may depend on traffic and mobility patterns within the network. Let � � ��, 	
 be the tree, where � ∈ � corresponds to a node which has a location database containing 
entries for objects in the subtree rooted at the node, and 
 � ��, �
 ∈ 	  is the bidirectional 
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communication link between two connected nodes � and �. Each object is addressed by a universally 
unique identifier (e.g., object handles in [8,11]). Each node is of the form 〈�, �〉, where � indicates that 
the node is in level � of the tree (In our model, higher level of nodes is marked by higher value) and y 
represents the �th node in level � (1 � � � �). Each parent knows its children nodes. The nodes in 
each level of the hierarchy form finer and finer partitions of the total coverage area. A node 〈�, �〉 serves 
a single registration area which consists of several finer registration areas managed by nodes in the 
subtree rooted at the node. 

 

 
 (a) (b) 

Fig. 3. Basic hierarchical location management. (a) Location update and (b) location lookup. 
 
Movement of an object must be accompanied by updates in the appropriate databases. Let the set of 

ancestors and descendants of a node in the tree be defined in the usual manner. Let ����〈�, �〉, 〈�, �〉
 
denote the lowest common ancestor of node 〈�, �〉 and node 〈�, �〉. Fig. 3(a) represents the location 
update procedure when an object moves from node 〈1,1〉 to node 〈1,4〉. Node 〈1,4〉 accepts the object 
by entering its identifier in the registration list of database within the node, and then, on the tree’s way, 
a message is sent up with the information that the object has moved to node 〈1,4〉. Each node 
encountered by this message, if the database in the node does not already have an entry for the object, 
adds an entry for the object which points to the previous node on the path of the message. This message 
finally encounters a node at which database already has an entry for the object. It is the ����〈1,1〉, 〈1,4〉
 � 〈3,1〉. This node terminates the upward message, and initiates a downward 
message on the tree’s way up to node 〈1,1〉, telling databases encountered on the way to erase their 
pointer entries for the object. 

Requests for location lookup can arrive, or be generated at, any leaf node 〈�, �〉 in the network, and a 
callee is registered at any leaf node 〈�, �〉. If the callee is registered at the originating node, location 
lookup occurs with only one access at the database. If the callee is not registered at the originating 
database (that is, 〈�, �〉 � 〈�, �〉), the location lookup is routed up on the tree’s way. Fig. 3(b) represents 
the location lookup procedure when a caller in node 〈1,3〉 requests a location lookup into a callee in 
node 〈2,3〉. Both node 〈2,2〉 and node 〈3,1〉 encountered along the upward route look up the entry 
corresponding to the callee. The node at which database holds the entry is the ����〈1,3〉, 〈2,3〉� 
 〈4,1〉. 
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And then, the location lookup follows a chain of downward pointers to the node at which the callee is 
finally registered; the downward chain consists of nodes 〈4,1〉, 〈3,2〉 and 〈2,3〉. 

 
3.2 Hierarchical Location Caching Scheme 
 

In this section, we propose our hierarchical location caching scheme. The application of this scheme 
perfectly fits the proposed hierarchical structure of location databases. When a caller sends a location 
lookup message for a callee and the lookup procedure is completed, the cache database of the caller’s 
leaf node records the entire downward chain of nodes which register the callee currently. In order to 
make the proposed scheme efficient, we introduce the hierarchical thresholds. In the chain, each node is 
associated with one threshold. These thresholds are used to exploit spatial locality of a mobile object 
and support cache invalidation. 

If a caller was located at node 〈�, �〉 and a callee � was found in node 〈�, 	〉 in the latest location 
lookup event, the cache of the node 〈�, �〉 keeps a record (a chain of pointers) for the callee � in its 
database. Also, we define 
�,� as the level of ��
(〈�, �〉, 〈�, 	〉). Then, the record includes two fields as 
follows. 

� ��: the time of the latest lookup to � 
� �: the list of (�� ,��) pairs serving � at time ��. In the pair, �� is the node which registers � at 

level �, and ��  is the threshold associated with �� for 1 ≤ � ≤ 
�,� . 

The list � arranges (�� ,��) pairs from lower level to higher level. Note that there is no threshold 
correspondent to ���,� in the list and �� < ���� for 1 ≤ � ≤ 
�,� − 1. 

For example, with Fig. 4, consider that the caller at node 〈1,1〉 requests a location lookup for callee A 
at node 〈1,4〉 at time ‘19h 15m 57s, 2015-01-20’. After the lookup procedure has finished, the callee’s 
cache information stored at node 〈1,1〉  has the request time as �� ’s value and the list 
�: {�〈1,4〉, 10��, �〈2,3〉, 34��, �〈3,2〉, 57��, �〈4,1〉, −�} . After another location lookup procedure 
requested for callee � in node 〈2,7〉 has finished, the cache record is also depicted at the figure. 

Suppose that, at time �, a new location lookup to the callee � arrives at a leaf node. Let us assume the 
caller’s leaf node has the cache information for the callee � and the pairs ���,���, �����,�����, …, ��	
�,�	
��, ��	 , −� have been in the list �, where 1 ≤ � < � ≤ �. Then, the proposed scheme is 
described as follows: 

 
Case 1. If � − �� ≤ �� , the cached �� is selected as a location hint which indicates the node serving �. 
     Case 1.1. After the node �� is queried, if � is found (a location hit occurs), �� is assigned the value �.  
     Case 1.2. Otherwise (a location miss occurs), Case 3 takes place. 
Case 2. If ��
� < � − �� ≤ �� , where � < � < �, then the cached �� is selected as a location hint 

which indicates the node serving the callee. Otherwise (that is, � − �� > �	
�), the cached �	 is selected 
as a location hint 

    Case 2.1. After the selected node is queried, if � is found, it is assumed that � is in the subtree 
rooted at the node. The location lookup follows a chain of downward pointers until reaching the lowest 
node at which � is located. And then, �� is assigned the value �. If some of the followed nodes are 
different with ones in the list � of cache information, the list � is updated with the founded nodes. 

    Case 2.2. Otherwise (� is not found at the selected node), Case 3 takes place. 
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Case 3. When a location miss occurs at Case 1 and Case 2, the location lookup continues up from the 
node where the location miss takes place. On finding the node which registers �, the location lookup 
follows a chain of downward pointers from the node until reaching the lowest node at which � is 
located. After location lookup procedure has finished, the new downward chain including nodes 
registering � is assigned to the list � and  ! is assigned the value !. 

 
It is apparent that the lookup cost is low if Case 1.1 or Case 2.1 occurs. On the other hand, Case 1.2 

or Case 2.2 results in an extra penalty for the cost since the additional procedure, Case 3, is required. If 
a mobile object moves infrequently and shows high spatial locality, location hits are frequent. 
Otherwise, location misses are frequent. 

With Fig. 4, let us consider that a caller at node 〈1,1〉 requests a location lookup for a callee A. As 
depicted in Fig. 4, the cache information for the callee A is assumed to be already managed at the node 〈1,1〉. Suppose that the request happens at time ‘19h 20m 14s, 2015-01-20’. In the case, since the 
difference between the stored previous lookup time ‘19h 15m 57s, 2015-01-20’ and the current request 
time is below the first threshold ‘10m’, the node 〈1,4〉 is selected and directly queried (Case 1). If the 
callee � is found at the node (Case 1.1),  ! is assigned the request time and the procedure comes to an 
end. 

 

 
Fig. 4. Cache information in hierarchical location caching scheme. 



Youn-Hee Han, Hyun-Kyo Lim, and Joon-Min Gil 

 

 

J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 | 1417 

If the callee 
 has moved to a neighboring node 〈1,5〉 prior to the lookup, it is not found at the 
selected node (Case 1.2). In this case, the node 〈2,3〉, which is the parent of the node 〈1,4〉, is queried. 
Since the callee 
’s entry is not found at the node 〈2,3〉, the node 〈3,2〉, which is the parent of the node 〈2,3〉, is also searched. Since the entry in the node 〈3,2〉’s database has a pointer for the callee 
, the 
lookup procedure continues down until reaching the lowest node 〈1,5〉 at which the callee 
 is located. 
After the procedure has finished, the list � is updated with two new nodes, 〈1,5〉 and 〈2,4〉, instead of 
the existing nodes, 〈1,4〉 and 〈2,3〉. Finally, �� is assigned the request time (Case 3). 

 
 

4. Performance Analysis 

In this section, we use a �-level balanced tree structure of location databases for simplicity of 
performance analysis, although an arbitrary tree architecture was exploited for describing our scheme 
in the previous section. Moreover, we add an additional condition into the system model: root node and 
all internal nodes have � children. So, we can define the �/� balanced tree structure of location 
databases, ��/�, as the �-level balanced tree structure satisfying the additional conditions. A tree ��/� 

has total �
�
�

�
�
 nodes (databases), where there are �� − 1  leaf nodes. In the ��/� , let �
�  be a 

registration area in level �, � − 1 where 1 ≤ � ≤ �. �
� is the smallest registration area in level 1 and 
has no sub-registration area. For 2 ≤ � ≤ �, an �
� has � sub-registration areas. The mathematical 
expression for an �
� is as follows: 

 

�
� =��
�
��

�

�
�

 (1) 

 
where �
�
��  is �th registration area in level � − 1. Also, we assume the homogeneous network of which 
all registration areas in same level have the same shape and size. 

Let ����  be i.i.d. (independently and identically distributed) random variable representing the 
residence time of an �
� . Let ����(�)  be the density function of ���� . ����  is random variable 
representing the residence time of the lowest node �
�, and its density function is ����(�). 

We assume that ����  has a Gamma distribution with mean 1/�(= �������), standard deviation  , 
and variance !(=  �). The Gamma distribution is selected for its flexibility and generality. By selecting 
the proper values for the parameters, a Gamma distribution can be an Exponential, an Erlang or a Chi-
square distribution. A Gamma distribution can also be used to represent the distribution for a set of 
measured data. The Laplace transform of the Gamma distribution is 

 

����∗ ��� = " #�� + #�$
�

,%ℎ�&� # = 1!�� (2) 

 
For 2 ≤ � ≤ �, suppose that an object visits ��
�
�s in an �
� for a period ����� . During ����� , the 

object resides at 	th �
�
� for a period ��. Then, ����� = �� + �� +⋯+ �� has the following density 
function: 
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����

������ � � � …� ������
����������

����…������
���	��������

�� 	 �� 	⋯	 ��	��

	
�	⋯	
���


����



	
�


��






��


���	�…������ (3) 

Using the Laplace transform convolution, we can get the Laplace transform for "���

����!
 as follows: 
 

"���

���∗�#
 � $"�����

∗ �#
%� . (4) 

where "�����

��� �#
 is the Laplace transform of "�����
�!
. 

 

 
Fig. 5. Mesh 4 ' (��
) registration area *��	
s in an *��. 

 
We describe a two-dimensional random walk model for mesh planes in order to compute the area 

residence time density function. Our model is similar to one proposed by [16] and considers a regular 
hierarchical area overlay structure. We assume that an object resides in an *�� for a period and moves 
to one of its four neighbors with the same probability, i.e., with probability 1/4. Recursively from this 
assumption, for 2 � � � � ' 1, we also can say that an object resides in an *�� for a period and moves 
to one of other four neighbor *�� with probability 1/4. For 2 � � � �, an *�� is referred to as an ) ' (��
) if it overlays with 4)� ' 4) , 1�� *
 *��	
s. Fig. 5 shows the 4 ' (��
) *�� overlaying 49 *��	
s in ��/��. *��	
 at the center of *�� is called the (��
)	0. *��	
s that surround the (��
)	# ' 1 *��	
s are called (��
)	#. In an ) ' (��
) *�� , *��	
s that surround the (��
)	) ' 1 *��	
s are 
referred to as boundary neighbors, which are outside of the *��. 

According to the equal moving probability assumption, we classify *��	
s in an *�� into several 
types. An *��	
  type is of the form $�, �%, where �  indicates that the *��	
  is in layer �  and � 

represents the � , 1st type in layer �. *��	
s of the same type have the same traffic flow pattern 
because they are at the symmetrical positions on the mesh area. Fig. 5 illustrates the type of *��	
s for a 4 ' (��
) *��. 
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In the random walk model of an & − 
�'�& �
�, a state ((, ') represents that an object is in one of 
the �
�
�s of type [(, ']. In & − 
�'�& �
�, the state (&, 	) represents that the object moves out of the 
area from state (& − 1, 	), where 0 ≤ 	 ≤ 2& − 3. For 0 ≤ 	 ≤ 2& − 3, states (&, 	) are absorbing, the 
others are transient. For & > 1, the total number )(&) of states for random walk of & − 
�'�& �
� is  
&� + r − 1. The transition matrix of this random walk is an )(&) × )(&) matrix * = (�(�,�)(��,��)). For 
0 ≤ 	 ≤ 2& − 3, �(�
�,�)(�,�) is the probability that an object moves from an �
�
� of the type [& − 1, 	] 
to a neighbor out of the area �
� in one step. The absorbing state (&, 	) loops back to itself with 
probability 1. 

For � ≥ 1, we use the Chapman-Kolmogorov equation to compute the probability �(�) for the 
number of steps that an object moves from an �
�
�  type to another. An element �

(�,�)(��,��)

(�)  in �(�) is 
the probability that the random walk moves from state ((, ') to state ((�,'�) with exact � steps. For 
0 ≤ 	 ≤ 2& − 3, define ��,��,����,�� as 

 

��,��,����,�� = + ���,����,�� , �,& � = 1
���,����,��(�)

− ���,����,��(�
�)
, �,& � > 1. (5) 

 
Then, ��,��,����,�� is the probability that an object initially resides at an �
�
� of the type [(, '], moves 

into an �
�
� of the type [& − 1, 	] at the �-1st step, and then moves out of the �
� at the �th step. 
Let .(�
�,�)	be the probability that an object enters the �
� through an �
�
� of the type [& − 1, 	] at 

the first step and ./(�
�,�) be the probability that an object moves out of the �
 through an �
 of the 
type [& − 1, 	] at the last step. Then, for & ≥ 2, we have 

 

./(�
�,�) = 0 0.(�
�,�)��,��,����,��
�

�
�

��
�

�
�

 (6) 

0 ./��
�,��
��
�

�
�

= 1 (7) 

 
Each term of the right side of Eq. (6) represents the probability that an object initially resides at an 

�
�
� of the type [& − 1, 	]  and leaves the �
� from an �
�
� of the type [& − 1, 	]  at the �th step. For 
& > 1, the following equations hold 

 

1.(�
�,�) = ./(�
�,�) 		 				.(�
�,�) = ./(�
�,��
�
�), �,& 0 < 	 ≤ 2& − 3 (8)
 

 
From Eqs. (6)–(8), we can get a linear system and a particular solution for .(�
�,�). For a 4 − 
�'�& 

�
�, we have .(�,�) ≃ 28.571% and .(�,�) ≃ 14.285% for 0 ≤ 	 ≤ 5. For a 5 − 
�'�& �
�, we have 
.(�,�) ≃ 22.222%  and .(�,�) ≃ 11.111%  for 0 ≤ 	 ≤ 7 . For the two �
� 	 structures, we use 500 
truncated terms in Eq. (6) to approximate the infinite summations. The error for the truncation is 
within 10
��. 

For & ≥ 2 and 2 ≤ � ≤ �, from Eqs. (3) and (4), the Laplace transform of residence time density 
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function "���
��
 for an ) ' (��
) *�� is as follows. 

 

"���

∗ �#
 � / / / 0��	
,����,��	
,����,��"���

���∗�#
��	�

���

��	�

���

�

��


			 � / / / 0��	
,����,��	
,����,�� ∙ 2"�����

∗ �#
3���	�

���

��	�

���

�

��


 (9)
 

 
For ) 4 2, from the moment generation property, the expected residence time of a registration area is 

as follows: 
 

E$!���
% � / / / 0��	
,����,��	
,����,��6�7
��	�

���

��	�

���

.�

��


 (10) 

where 

6�7
 � �'1
72"�����

∗ �0
3�	
 9"�����

∗ �#
9# :
���

 (11) 

Since the residence time density function for an ) ' (��
) *�� is defined recursively in Eq. (9), we 
can get the recursive definition of residence time density function for ) ' (��
) registration areas in ��/�, where R � 4)� ' 4r , 1, as follows. 

 

"���

∗ �#
 �
=>
?
>@ A BC# , BCD

� 		 			�" � � 1, E!F
)G�#

/ / / 0��	
,����,��	
,����,�� ∙ 2"�����

∗ �#
3���	�

���

��	�

���

�

��


8 (12)
 

 
4.1 Probabilities for Each Case of the Hierarchical Location Caching Scheme 
 

 
Fig. 6. The relationship among !�, !���

 and !̃���
. 
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This section proposes probabilities in connection with the hierarchical location caching scheme. Let 
��	be an i.i.d. random variable, which represents the time interval between two consecutive location 
lookups directed from an �
� to a remote object �. Let �̃���  be the time interval between the previous 
location lookup for � and the time when � moves out of the �
�. The relationship among ��, ����  and 
�̃���  is given in Fig. 6. Let ��(�) and �3���(�) be the density function of �� and �̃��� , respectively. 

We assume that the arrivals of location lookup request for an object are a Poisson process and 
�[��] = 1/��. From the assumption, we have 

 

����� = ���
���  

(13)
 

Since the incoming location lookup requests are random observers of ����  for all � (which is referred 
to as the excess life theorem [17]), we have the density function of �̃���  as follows. 

 

�3������ = 1�[����]4 ����(5)
�

�
�

65  (14)
 

 
From [18], we can get the Laplace transform for the �̃��� distribution as follows. 
 

�3���∗ ��� = 4 �
���3������6�
�

�
�

		 =
1�[����] �1 − �3���∗ ����. (15)

 

The probability that an object moves no �
� between two consecutive location lookups is derived as 
follows. 

 

Pr��� < �̃���� = 4 4 ����

��
�

�
����3�������6��6��
�

��
�

		 = 1 −
1�[����]�� �1 − ����∗ �����.

 

(16)
 

 
Let us assume that, after the latest location lookup to an object �, the cache information at the leaf 

node 〈1, �〉 indicates that the object � resides at a leaf node 〈1, 	〉 at the present time (In this analysis, we 
use complete balanced tree. Therefore, the level of a leaf node is always one). Also, we define 
�,�  as the 
level of ��
�〈1, �〉, 〈1, 	〉�. 

Let 7� be the probability of the cache hit with threshold ��. That is, 7� is the probability for Case 1.1 
presented in the hierarchical location caching scheme. From conditions given by Case 1.1, we have 

 7� = Pr[�� < �̃���] ⋅ Pr[�� ≤ ��]
																	 = 81 − ��� 91 − " #��� + #�$

�:; ⋅ <1 − �
����=. (17)
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Let >� be the probability of the cache miss with threshold ��. That is, >� is the probability for Case 1.2 

presented in the proposed scheme. From conditions given by Case 1.2, we have 

 

>� = Pr[�� ≥ �̃���] ⋅ Pr[�� ≤ ��]
=

��� 91 − " #��� + #�$
�: ⋅ <1 − �
����=. (18)

 

 
For 1 < � < 
�,�, let 7� be the probability of the cache hit with threshold �� . From conditions given 

by Case 2.1, we have 
 7� = Pr[�� < �̃��	] ⋅ Pr[��
� ≤ �� ≤ ��]
																																	 = 81 − 1�[���	]�� �1 − ���	∗ �����; ⋅ <�
���	
� − �
���	=. (19)

 

 
On the other hand, when � = 
�,�, we have 
 

7��,� = Pr[�� < �̃����,�] ⋅ Pr [���,�
� < ��]
																		 = ?1 − 1�[�����,�]�� @1 − �����,�∗ ����AB ⋅ �
�����,�
� .

 

(20)
 

 
For 1 < � < 
�,�, let >�  be the probability of the cache miss with threshold �� . From conditions given 

by Case 2.2, we have 
 

>� = Pr[�� ≥ �̃��	] ⋅ Pr[��
� ≤ �� ≤ ��]
														 =

1�[���	]�� �1 − ���	∗ ����� ⋅ <�
���	
� − �
���	=. (21)
 

 
On the other hand, when � = 
�,�, we have 
 

>��,� = Pr[�� > �̃����,�] ⋅ Pr[���,�
� < ��]
=

1�[�����,�]�� @1 − �����,�∗ ����A ⋅ �
�����,�
� .
 

(22)
 

 
Since Case 3 indicates the behaviors following after Case 1.2 or Case 2.2 occurs, we need not 

consider a probability for the case. All probabilities proposed in Eqs. (17)–(22) sum up to 1. 
 

0�7� + >�� = 1
��,�

�
�

.  

(23)
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4.2 Network Cost Analysis 
 

This section proposes the network cost analysis of the hierarchical location caching scheme using the 
probabilities presented by the above subsection. We assume that there are shortcuts between interior 
nodes. Since the network costs of hierarchical location lookup caching scheme through shortcuts 
depend on the network architecture, we evaluate the benefits using diverse values of the network 
parameters. Also, we assume that a location notification to caller or caller’s node after a successful 
lookup takes the same costs in both caching scheme and non-caching scheme and the costs are not 
included into our analysis. 

Firstly, we normalize the network cost to send a message between a parent node and a child node into 
C. Consider the remote access to a callee � at node 〈1, 	〉 from a caller at node 〈1, �〉. Let ��� be the 
network cost to send a message through a shortcut between 〈1, �〉 and a node of level �, where 
1 < � < 
�,��. The node of level � is one of ancestors of 〈1, 	〉. We assume that the value of ��� is always 
� times as low as that of the cost which does not use a shortcut. If a shortcut is not used, a message goes 
to the node of level � from 〈1, �〉 via ��
�〈1, �〉, 〈1, 	〉�. For � ≥ 1, each ��� is defined as follows. 

 

��� = 
�,� − 1 + 
�,� − �� ⋅ C.  

(24)
 

 
Let � � be the network cost of a location lookup when �� is used as the cache information and a cache 

hit occurs. When a node �� between �� and ���,� is used as the cache information, there is additional 
cost � − 1, which brings out when the location lookup follows a chain of downward pointers from �� 
until reaching the lowest node where the callee is located. Therefore, � � can be defined as follows. 

 

� � = ��� + (� − 1) ⋅ C.  

(25)
 

Let �!�  be the network cost of a location lookup when �� is used as the cache information and a cache 
miss occurs. When a cache miss takes place, the lookup continues up from the node where the miss 
takes place until finding a node storing an entry for the callee, and down to the lowest node where the 
callee is located. Therefore, �!�  can be defined in ��/� as follows. 

 

�!� = ��� + 0 *&[�̃���
�
< �� ≤ �̃���] ⋅ (ℎ − � + ℎ − 1) ⋅ C

�

 
���

																														= ��� + 0 1 − ����
�

∗ (��)�[����
�
]�� 81 − 1 − ����∗ (��)�[����]�� ; ⋅ (ℎ − � + ℎ − 1) ⋅ C

�

 
���

.

 

(26)
 

 
Therefore, the network cost in the hierarchical location caching scheme can be defined as 
 

Ω� =0(7� ⋅ � � + >� ⋅ �!� )
��,�

�
�

.  

(27)
 



Hierarchical Location Caching Scheme for Mobile Object Tracking in the Internet of Things 

 

1424 | J Inf Process Syst, Vol.13, No.5, pp.1410~1429, October 2017 

On the other hand, the network cost of non-caching scheme is defined as follows. 
 

Ω� � 2J ⋅ �(�,� ' 1
.  (28)
 

Since threshold values affect the performance of the proposed scheme, it is important to determine 
the values. A threshold reflects a forecasted residence time at the found area after last location lookup. 
In this analysis, therefore, the values are assumed to be proportional to the expected residence time of 
the associated registration area. For 1 � 7 L (�,�, we use the threshold weighting factor M and select the 
values as follows. 

 

�� � 	$!���
% ⋅ M.  (29)

 

 
 (a) (b) (c) (d) 

Fig. 7. Relative network cost ratios (Ω
/Ω�). (a) λ� � 0.3, (b) λ� � 0.7, (c) λ� � 1.5, and (d) λ� � 2.5. 
 
Fig. 7 depicts the variation of network cost ratio Ω
/Ω� with respect to various values of M, λ�, and (�,� . The values of parameters used in the numerical results are as follows: C � 1.0, � � 5, ) � 4 

(hence, * � 49), Q � 1/C, R � 2, and J � 1. The results show that the network cost reduction of 
hierarchical location caching scheme becomes high when the frequency λ� of location lookup becomes 
high. Also, the network cost reduction becomes relatively high when the lowest common ancestor 
between caller and callee is near at the root of the proposed tree architecture (i.e. when (�,� is high). The 
cost of the caching scheme even becomes higher than that of non-caching scheme when (�,� � 2 and 
threshold weighting factors are more than 1.3 (when λ� � 0.3) or 3.0 (when λ� � 0.7). In the other 
hand, the cost reduction of up to 45% is achieved when λ� � 2.5 and (�,� � 4. In the case λ� � 0.3 and λ� � 0.7, the most cost reduction is shown when the weighting factors are roughly 0.3 and 0.4, 
respectively (although we cannot say which value makes the cost reduction maximum when (�,� � 2). 
We also can see that the network cost ratio is regular irrespectively of the weighting factor when λ� is 
high. That is, the efficiency of the caching scheme is high and regular regardless of the weighting factor 
value if lookup rate is high. 

Fig. 8 shows the effect of the standard deviation Q (or variance) for the residence time !���
 

distribution on network cost. Except λ�, (�,� and Q, the values of other parameters used in this numerical 
results are the same as ones used in Fig. 7. We can observe that the network cost reduction becomes 
large as Q increases. That is, for the same expected value of !���

, more long residence times will be 
observed as the standard deviation increases. More long residence times imply that more cache hits 
occur. Thus, more cost reduction is observed. Also, we can see that the threshold weighting factor has 
significant impact on cost reduction when lookup rate is low. 
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 (a) (b) 
Fig. 8. The effect of the standard deviation for !���

 distribution on network cost ratio (Ω
/Ω�). (a) 
λ� � 0.5, ��,� � 3. (b) λ� � 2.0, ��,� � 3. 

 
Fig. 8 shows the effect of the standard deviation Q (or variance) for the residence time !���

 
distribution on network cost. Except λ�, (�,� and Q, the values of other parameters used in this numerical 
results are the same as ones used in Fig. 7. We can observe that the network cost reduction becomes 
large as Q increases. That is, for the same expected value of !���

, more long residence times will be 
observed as the standard deviation increases. More long residence times imply that more cache hits 
occur. Thus, more cost reduction is observed. Also, we can see that the threshold weighting factor has 
significant impact on cost reduction when lookup rate is low. 

 
4.3 Database Cost Analysis 
 

In this section, we are interested in discovering the reduction in database costs obtained by the 
hierarchical location caching scheme. The number of database operations caused by a location lookup 
increases in the hierarchical structure of location databases. In such environment, the caching scheme 
can reduce the number of database operations by bypassing quite many databases to lookup the 
location of a callee. Database costs are not under the influence of underlying network structure, which 
is contrasted with network costs. The only one which has impact on database costs is the number of 
query and write operations during a location lookup and update. 

For a given database (including the cache database), we normalize both a query cost and a write cost 
into U and B, respectively. Let  ̂�� be the database cost of a location lookup when �� is used as the cache 
information and a cache hit occurs. Prior to location database queries, it is required to query the cache 
database in the node where a caller exists. After querying the database in the cached node, other queries 
are performed to the databases in nodes within a chain of pointers from the selected node �� to the 
lowest node where the callee exists. Finally, the update to the cache database is required. So, from this 
procedure,  ̂�� can be defined as follows. 

 

 ̂�� � �7 , 1
 ⋅ U , B.  (30)
 

Let  ̂��  be the database cost of a location lookup when �� is used as the cache information and a cache 
miss occurs. When a cache miss takes place, the lookup continues up from the node where the miss 
takes place until finding a node storing an entry for the callee, and down to the lowest node where the 
callee is located. So,  ̂��  can be defined in ��/� as follows. 
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 ̂�� � U , B , / W)$!̃�����
L !� � !̃���

% ⋅ �F ' 7 , F ' 1
 ⋅ U�

����


																														� U , B , / 1' "�����

∗ �C�
	$!�����
%C� X1 ' 1 ' "���

∗ �C�
	$!���
%C� Y ⋅ �F ' 7 , F ' 1
 ⋅ U�

����


.
 (31)

 

 
Therefore, the database cost in the hierarchical location caching scheme can be defined as 
 

Z
 � /�[� ⋅  ̂�� , \� ⋅  ̂�� 

��,�

��


.  (23)
 

On the other hand, the database cost of non-caching scheme is defined as follows. 
 

Z� � 2U ⋅ �(�,� ' 1
.  (23)
 

 
 (a) (b) (c) (d) 

Fig. 9. Relative database cost ratios (θ
/θ�). (a)	λ� � 0.3, (b) λ� � 0.7, (c) λ� � 1.5, and (d) λ� � 2.5. 
 
Fig. 9 depicts the variation of database cost ratio θ
/θ� with respect to various values of M, λ�, and (�,� . 

The values of parameters used in the numerical results are as follows: C � 1.0, � � 5, ) � 4 (hence, * � 49), Q � 1/C, and U � B � 1. The results are similar to ones related to network costs. It is shown 
that the database cost reduction of hierarchical location caching scheme becomes high when the 
frequency λ� of location lookup becomes high. The cost reduction becomes relatively high when (�,� is 
high. When (�,� � 2, for the most part of λ� and M, the cost of the caching scheme even becomes higher 
than that of non-caching scheme. This is because the caching scheme requires additional location 
database query when location miss occurs and non-caching scheme itself does not need to access many 
databases when (�,� is so low. On the other hand, it is noted that the cost reduction of up to 55% is 
achieved when λ� � 2.5 and (�,� � 4. In the case λ� � 0.3 and λ� � 0.7, the most cost reduction is 
shown when the threshold weighting factors are roughly 1.0 and 1.2, respectively (although we cannot 
say which value makes the cost reduction maximum when (�,� � 2). We also can see that the database 
cost ratio is regular irrespectively of the weighting factor when λ� is high. That is, the efficiency of the 
caching scheme is high and regular regardless of the weighting factor value if lookup rate is high. 

Fig. 10 shows the effect of the standard deviation Q (or variance) for the residence time !���
 

distribution on database cost. We can observe that the database cost reduction becomes large as Q 
increases. Also, we can know that the weighting factor has significant impact on cost reduction when 
lookup rate is low. 
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 (a) (b) 
Fig. 10. The effect of the standard deviation for !���

 distribution on database cost ratio (θ
/θ�). (a) 
λ� � 0.5, ��,� � 3. (b) λ� � 2.0, ��,� � 3. 

 
 

5. Conclusions 

In the future systems accommodating a vast number of potentially mobile objects in the Internet of 
Things, it is required to locate a mobile object to communicate. Finding locations of mobile objects 
contributes significant traffic to the network and puts much overload to location databases. 

Two distinct but related topics were addressed in this paper. The first was the hierarchical location 
caching scheme supporting cache invalidation in a hierarchical architecture of location databases. The 
idea is to use the cache to store the location information which is used as a hint to locate the mobile 
objects, and to invalidate some corrupt cache by using the hierarchical threshold values. It was 
proposed to reduce location lookup costs in terms of the network signaling and database loads. In order 
to analyze performance of the proposed scheme, we designed a new random walk model reflecting 
hierarchical architecture. From the performance evaluation, we found the following facts: 1) the 
proposed scheme can reduce the network and database costs in most cases; 2) the cost reduction 
becomes high and regular irrespectively of various threshold values when λ� is high; 3) the cost 
reduction also becomes high when the called object is located far from the originator of lookup request; 
4) the cost reduction also becomes high as the standard deviation Q of the lowest area’s residence time 
increases. 
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