DOI QR코드

DOI QR Code

A Review of Graphene Plasmons and its Combination with Metasurface

  • Liu, Chuanbao (Key Laboratory of Environmental Fracture (Ministry of Education), University of Science and Technology Beijing) ;
  • Bai, Yang (Key Laboratory of Environmental Fracture (Ministry of Education), University of Science and Technology Beijing) ;
  • Zhou, Ji (State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University) ;
  • Zhao, Qian (State Kay Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University) ;
  • Qiao, Lijie (Key Laboratory of Environmental Fracture (Ministry of Education), University of Science and Technology Beijing)
  • Received : 2017.07.23
  • Accepted : 2017.09.06
  • Published : 2017.09.30

Abstract

Graphene has attracted a lot of attentions due to the unique electrical and optical properties. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz and mid-infrared and it demonstrates an extremely large confinement at the surface because of the particular electronic band structures. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. These features make graphene a promising candidate for plasmonics, biosensing and transformation optics. Furthermore, the combination of graphene and metasurfaces presents a powerful tunability for exotic electromagnetic properties, where the metasurfaces with the highly-localized fields offer a platform to enhance the interaction between the incident light and graphene and facilitate a deep modulation. In this paper, we provide an overview of the key properties of graphene, such as the surface conductivity, the propagating surface plasmon polaritons, and the localized surface plasmons, and the hybrid graphene/metasurfaces, either metallic and dielectric metasurfaces, from terahertz to near-infrared frequencies. Finally, there is a discussion for the current challenges and future goals.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 306 [5696] 666-69 (2004). https://doi.org/10.1126/science.1102896
  2. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., 81 [1] 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  3. L. Falkovsky, "Optical Properties of Graphene," J. Phys.: Conf. Ser., 129 [1] 012004 (2008). https://doi.org/10.1088/1742-6596/129/1/012004
  4. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, "A Graphene Field-Effect Device," IEEE Electron Device Lett., 28 [4] 282-84 (2007). https://doi.org/10.1109/LED.2007.891668
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, "Graphene Photonics and Optoelectronics," Nat. Photonics, 4 [9] 611-22 (2010). https://doi.org/10.1038/nphoton.2010.186
  6. C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, "Ultrafast Photoluminescence from Graphene," Phys. Rev. Lett., 105 [12] 127404 (2010). https://doi.org/10.1103/PhysRevLett.105.127404
  7. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, "Measurement of the Optical Absorption Spectra of Epitaxial Graphene from Terahertz to Visible," Appl. Phys. Lett., 93 [13] 131905 (2008). https://doi.org/10.1063/1.2990753
  8. L. Falkovsky and S. Pershoguba, "Optical Far-Infrared Properties of a Graphene Monolayer and Multilayer," Phys. Rev. B, 76 [15] 153410 (2007). https://doi.org/10.1103/PhysRevB.76.153410
  9. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 320 [5881] 1308 (2008). https://doi.org/10.1126/science.1156965
  10. M. Jablan, H. Buljan, and M. Soljacic, "Plasmonics in Graphene at Infrared Frequencies," Phys. Rev. B, 80 [24] 245435 (2009). https://doi.org/10.1103/PhysRevB.80.245435
  11. A. Grigorenko, M. Polini, and K. Novoselov, "Graphene Plasmonics," Nat. Photonics, 6 [11] 749-58 (2012). https://doi.org/10.1038/nphoton.2012.262
  12. F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, "Graphene Plasmonics: A Platform for Strong Light-Matter Interactions," Nano Lett., 11 [8] 3370-77 (2011). https://doi.org/10.1021/nl201771h
  13. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, and P. Godignon, "Optical Nano-Imaging of Gate-Tunable Graphene Plasmons," Nature, 487 [7405] 77-81 (2012). https://doi.org/10.1038/nature11254
  14. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol, "Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes," ACS Nano., 4 [7] 3839-44 (2010). https://doi.org/10.1021/nn100508g
  15. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-Variable Optical Transitions in Graphene," Science, 320 [5873] 206-9 (2008). https://doi.org/10.1126/science.1152793
  16. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A Graphene-based Broadband Optical Modulator," Nature, 474 [7349] 64-7 (2011). https://doi.org/10.1038/nature10067
  17. A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, "Fields Radiated by a Nanoemitter in a Graphene Sheet," Phys. Rev. B, 84 [19] 195446 (2011). https://doi.org/10.1103/PhysRevB.84.195446
  18. Y. Bao, S. Zu, Y. Zhang, and Z. Fang, "Active Control of Graphene-based Unidirectional Surface Plasmon Launcher," ACS Photonics, 2 [8] 1135-40 (2015). https://doi.org/10.1021/acsphotonics.5b00182
  19. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, "Gate-Tuning of Graphene Plasmons Revealed by Infrared Nano-Imaging," Nature, 487 [7405] 82-5 (2012). https://doi.org/10.1038/nature11253
  20. J. A. Gerber, S. Berweger, B. T. O'Callahan, and M. B. Raschke, "Phase-Resolved Surface Plasmon Interferometry of Graphene," Phys. Rev. Lett., 113 [5] 055502 (2014). https://doi.org/10.1103/PhysRevLett.113.055502
  21. G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Ozyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, "Ultrafast Optical Switching of Infrared Plasmon Polaritons in High-Mobility Graphene," Nat. Photonics, 10 [4] 244-47 (2016). https://doi.org/10.1038/nphoton.2016.45
  22. W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J.-C. Idrobo, "Atomically Localized Plasmon Enhancement in Monolayer Graphene," Nat. Nanotechnol., 7 [3] 161-65 (2012). https://doi.org/10.1038/nnano.2011.252
  23. Z. Fei, A. S. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. K. Liu, A. S. McLeod, G. Dominguez, M. Thiemens, Antonio H. Castro Neto, F. Keilmann, A. Zettl, R. Hillenbrand, M. M. Fogler, and D. N. Basov, "Electronic and Plasmonic Phenomena at Graphene Grain Boundaries," Nat. Nanotechnol., 8 [11] 821-25 (2013). https://doi.org/10.1038/nnano.2013.197
  24. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, "Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene," Nano Lett., 13 [8] 3698-702 (2013). https://doi.org/10.1021/nl401591k
  25. W. Gao, J. Shu, C. Qiu, and Q. Xu, "Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances," ACS Nano., 6 [9] 7806-13 (2012). https://doi.org/10.1021/nn301888e
  26. H. Lu, J. Zhao, and M. Gu, "Nanowires-Assisted Excitation and Propagation of Mid-Infrared Surface Plasmon Polaritons in Graphene," J. Appl. Phys., 120 [16] 163106 (2016). https://doi.org/10.1063/1.4966600
  27. Y. Zhao, G. Chen, Z. Tao, C. Zhang, and Y. Zhu, "High Q-Factor Plasmonic Resonators in Continuous Graphene Excited by Insulator-Covered Silicon Gratings," RSC Adv., 4 [50] 26535-42 (2014). https://doi.org/10.1039/c4ra03431g
  28. Y. V. Bludov, M. Vasilevskiy, and N. Peres, "Mechanism for Graphene-based Optoelectronic Switches by Tuning Surface Plasmon-Polaritons in Monolayer Graphene," Europhys. Lett., 92 [6] 68001 (2011).
  29. A. Y. Nikitin, P. Alonso-Gonzalez, and R. Hillenbrand, "Efficient Coupling of Light to Graphene Plasmons by Compressing Surface Polaritons with Tapered Bulk Materials," Nano Lett., 14 [5] 2896-901 (2014). https://doi.org/10.1021/nl500943r
  30. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, "Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators," Nano Lett., 13 [6] 2541-47 (2013). https://doi.org/10.1021/nl400601c
  31. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, "Far-Field Nanoscale Infrared Spectroscopy of Vibrational Fingerprints of Molecules with Graphene Plasmons," Nat. Commun., 7 12334 (2016). https://doi.org/10.1038/ncomms12334
  32. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, and Y. R. Shen, "Graphene Plasmonics for Tunable Terahertz Metamaterials," Nat. Nanotechnol., 6 [10] 630-34 (2011). https://doi.org/10.1038/nnano.2011.146
  33. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, "Damping Pathways of Mid- Infrared Plasmons in Graphene Nanostructures," Nat. Photonics, 7 [5] 394-99 (2013). https://doi.org/10.1038/nphoton.2013.57
  34. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, "Mid-Infrared Plasmonic Biosensing with Graphene," Science, 349 [6244] 165-68 (2015). https://doi.org/10.1126/science.aab2051
  35. F. J. Garcia de Abajo, "Graphene Plasmonics: Challenges and Opportunities," ACS Photonics, 1 [3] 135-52 (2014). https://doi.org/10.1021/ph400147y
  36. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. Garcia de Abajo, "Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene," ACS Nano., 7 [3] 2388-95 (2013). https://doi.org/10.1021/nn3055835
  37. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, "Tunable Infrared Plasmonic Devices Using Graphene/Insulator Stacks," Nat. Nanotechnol., 7 [5] 330-34 (2012). https://doi.org/10.1038/nnano.2012.59
  38. T. Guo and C. Argyropoulos, "Broadband Polarizers based on Graphene Metasurfaces," Opt. Lett., 41 [23] 5592-95 (2016). https://doi.org/10.1364/OL.41.005592
  39. A. Fallahi and J. Perruisseau-Carrier, "Design of Tunable Biperiodic Graphene Metasurfaces," Phys. Rev. B, 86 [19] 195408 (2012). https://doi.org/10.1103/PhysRevB.86.195408
  40. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, "Mid-Infrared Tunable Optical Polarization Converter Composed of Asymmetric Graphene Nanocrosses," Opt. Lett., 38 [9] 1567-69 (2013). https://doi.org/10.1364/OL.38.001567
  41. F. Lu, B. Liu, and S. Shen, "Infrared Wavefront Control based on Graphene Metasurfaces," Adv. Opt. Mater., 2 [8] 794-99 (2014). https://doi.org/10.1002/adom.201400100
  42. T. Yatooshi, A. Ishikawa, and K. Tsuruta, "Terahertz Wavefront Control by Tunable Metasurface Made of Graphene Ribbons," Appl. Phys. Lett., 107 [5] 053105 (2015). https://doi.org/10.1063/1.4927824
  43. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, "Graphene Plasmonic Metasurfaces to Steer Infrared Light," Sci. Rep., 5 12423 (2015). https://doi.org/10.1038/srep12423
  44. X. Hu, L. Wen, S. Song, and Q. Chen, "Tunable Graphene Metasurfaces by Discontinuous Pancharatnam-Berry Phase Shift," Nanotechnology, 26 [50] 505203 (2015). https://doi.org/10.1088/0957-4484/26/50/505203
  45. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, "Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces," ACS Photonics, 2 [2] 216-27 (2015). https://doi.org/10.1021/ph5003279
  46. N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, "Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene," Nano Lett., 14 [1] 78-82 (2013). https://doi.org/10.1021/nl403253c
  47. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, and S.-Y. Choi, "Switching Terahertz Waves with Gate-Controlled Active Graphene Metamaterials," Nat. Mater., 11 [11] 936-41 (2012). https://doi.org/10.1038/nmat3433
  48. M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, "Tunable Terahertz Hybrid Metal-Graphene Plasmons," Nano Lett., 15 [10] 7099-104 (2015). https://doi.org/10.1021/acs.nanolett.5b03191
  49. X. Ni, A. V. Kildishev, and V. M. Shalaev, "Metasurface Holograms for Visible Light," Nat. Commun., 4 2807 (2013). https://doi.org/10.1038/ncomms3807
  50. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface Holograms Reaching 80% Efficiency," Nat. Nanotechnol., 10 [4] 308-12 (2015). https://doi.org/10.1038/nnano.2015.2
  51. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, "Helicity Multiplexed Broadband Metasurface Holograms," Nat. Commun., 6 8241 (2015). https://doi.org/10.1038/ncomms9241
  52. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-Thin, Planar, Babinet-Inverted Plasmonic Metalenses," Light Sci. Appl., 2 [4] e72 (2013). https://doi.org/10.1038/lsa.2013.28
  53. F. Aieta, P. Genevet, M. A. Kats, N. Yu, and R. Blanchard, "Aberration-free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths based on Plasmonic Metasurfaces," Nano Lett., 12 4932-36 (2012). https://doi.org/10.1021/nl302516v
  54. M. Kang, T. Feng, H.-T. Wang, and J. Li, "Wave Front Engineering from an Array of Thin Aperture Antennas," Opt. Express, 20 [14] 15882-90 (2012). https://doi.org/10.1364/OE.20.015882
  55. C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, "Equivalent Energy Level Hybridization Approach for High-Performance Metamaterials Design," Acta Mater., 135 [15] 144-49 (2017). https://doi.org/10.1016/j.actamat.2017.06.032
  56. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, 334 [6054] 333-37 (2011). https://doi.org/10.1126/science.1210713
  57. C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, "Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth," Sci. Rep., 6 34819 (2016). https://doi.org/10.1038/srep34819
  58. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband Light Bending with Plasmonic Nanoantennas," Science, 335 [6067] 427 (2012). https://doi.org/10.1126/science.1214686
  59. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett., 84 [18] 4184-87 (2000). https://doi.org/10.1103/PhysRevLett.84.4184
  60. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science, 314[5801] 977-80 (2006). https://doi.org/10.1126/science.1133628
  61. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation," Nano Lett., 14 [3] 1394-99 (2014). https://doi.org/10.1021/nl4044482
  62. K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, and D. N. Neshev, "Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control," Nano Lett., 15 [8] 5369-74 (2015). https://doi.org/10.1021/acs.nanolett.5b01752
  63. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, "High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode," Nano Lett., 15 [9] 6261-66 (2015). https://doi.org/10.1021/acs.nanolett.5b02926
  64. W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, "High-Contrast Terahertz Wave Modulation by Gated Graphene Enhanced by Extraordinary Transmission through Ring Apertures," Nano Lett., 14 [3] 1242-48 (2014). https://doi.org/10.1021/nl4041274
  65. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, "Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators," Nano Lett., 14 [11] 6526-32 (2014). https://doi.org/10.1021/nl503104n
  66. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, "Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces," Phys. Rev. X, 5 [4] 041027 (2015).
  67. N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, and B. Fallahazad, "Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces," Nano Lett., 16 [6] 3607-15 (2016). https://doi.org/10.1021/acs.nanolett.6b00732
  68. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, "Graphene-Antenna Sandwich Photodetector," Nano Lett., 12 [7] 3808-13 (2012). https://doi.org/10.1021/nl301774e
  69. Y. Fan, N. H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, "Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime," Adv. Opt. Mater., 4 [11] 1824-28 (2016). https://doi.org/10.1002/adom.201600303
  70. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457 [7230] 706 (2009). https://doi.org/10.1038/nature07719
  71. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, "Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper," J. Am. Chem. Soc., 133 [9] 2816-19 (2011). https://doi.org/10.1021/ja109793s
  72. E. V. Castro, H. Ochoa, M. Katsnelson, R. Gorbachev, D. Elias, K. Novoselov, A. Geim, and F. Guinea, "Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons," Phys. Rev. Lett., 105 [26] 266601 (2010). https://doi.org/10.1103/PhysRevLett.105.266601
  73. C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, "Controlling Inelastic Light Scattering Quantum Pathways in Graphene," Nature, 471 [7340] 617-20 (2011). https://doi.org/10.1038/nature09866
  74. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, "Electrical Control of Optical Plasmon Resonance with Graphene," Nano Lett., 12 [11] 5598-602 (2012). https://doi.org/10.1021/nl302656d
  75. C. Liu, Y. Bai, J. Zhou, Q. Zhao, and L. Qiao, "Large-Scale Modulation of Left-Ganded Passband in Gybrid Graphene/Dielectric Metasurface," Ann. Phys., 529 [8] 1700125 (2017). https://doi.org/10.1002/andp.201700125
  76. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, "Plasmon-Induced Doping of Graphene," ACS Nano., 6 [11] 10222-28 (2012). https://doi.org/10.1021/nn304028b
  77. H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, "Infrared Spectroscopy of Tunable Dirac Terahertz Magneto-Plasmons in Graphene," Nano Lett., 12 [7] 3766-71 (2012). https://doi.org/10.1021/nl3016335
  78. V. P. Verma, S. Das, I. Lahiri, and W. Choi, "Large-Area Graphene on Polymer Film for Flexible and Transparent Anode in Field Emission Device," Appl. Phys. Lett., 96 [20] 203108 (2010). https://doi.org/10.1063/1.3431630
  79. F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, and A. C. Ferrari, "Surface-Enhanced Raman Spectroscopy of Graphene," ACS Nano., 4 [10] 5617-26 (2010). https://doi.org/10.1021/nn1010842
  80. S. Mikhailov and K. Ziegler, "New Electromagnetic Mode in Graphene," Phys. Rev. Lett., 99 [1] 016803 (2007). https://doi.org/10.1103/PhysRevLett.99.016803
  81. Y. Liu, R. F. Willis, K. Emtsev, and T. Seyller, "Plasmon Dispersion and Damping in Electrically Isolated Two- Dimensional Charge Sheets," Phys. Rev. B, 78 [20] 201403 (2008). https://doi.org/10.1103/PhysRevB.78.201403
  82. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, and M. Thiemens, "Infrared Nanoscopy of Dirac Plasmons at the Graphene-$SiO_2$ Interface," Nano Lett., 11 [11] 4701-5 (2011). https://doi.org/10.1021/nl202362d
  83. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface Plasmon Subwavelength Optics," Nature, 424 [6950] 824 (2003). https://doi.org/10.1038/nature01937
  84. A. Vakil and N. Engheta, "Transformation Optics Using Graphene," Science, 332 [6035] 1291-94 (2011). https://doi.org/10.1126/science.1202691
  85. A. Otto, "Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection," Z. Phys., 216 [4] 398-410 (1968). https://doi.org/10.1007/BF01391532
  86. E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Z. Naturforsch. A, 23 [12] 2135-36 (1968).
  87. P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, and A. Zurutuza, "Controlling Graphene Plasmons with Resonant Metal Antennas and Spatial Conductivity Patterns," Science, 344 [6190] 1369-73 (2014). https://doi.org/10.1126/science.1253202
  88. B. Wang, X. Zhang, X. Yuan, and J. Teng, "Optical Coupling of Surface Plasmons between Graphene Sheets," Appl. Phys. Lett., 100 [13] 131111 (2012). https://doi.org/10.1063/1.3698133
  89. B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, "Strong Coupling of Surface Plasmon Polaritons in Monolayer Graphene Sheet Arrays," Phys. Rev. Lett., 109 [7] 073901 (2012). https://doi.org/10.1103/PhysRevLett.109.073901
  90. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, "Edge and Waveguide Terahertz Surface Plasmon Modes in Graphene Microribbons," Phys. Rev. B, 84 [16] 161407 (2011). https://doi.org/10.1103/PhysRevB.84.161407
  91. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. Garcia de Abajo, "Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons," ACS Nano., 6 [1] 431-40 (2011). https://doi.org/10.1021/nn2037626
  92. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, "Surface Plasmon Enhanced Absorption and Suppressed Transmission in Periodic Arrays of Graphene ribbons," Phys. Rev. B, 85 [8] 081405 (2012). https://doi.org/10.1103/PhysRevB.85.081405
  93. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, "Broadband Graphene Terahertz Modulators Enabled by Intraband Transitions," Nat. Commun., 3 780 (2012). https://doi.org/10.1038/ncomms1787
  94. S. Thongrattanasiri, F. H. Koppens, and F. J. G. De Abajo, "Complete Optical Absorption in Periodically Patterned Graphene," Phys. Rev. Lett., 108 [4] 047401 (2012). https://doi.org/10.1103/PhysRevLett.108.047401
  95. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, "Tunable Terahertz Coherent Perfect Absorption in a Monolayer Graphene," Opt. Lett., 39 [21] 6269-72 (2014). https://doi.org/10.1364/OL.39.006269
  96. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, "Tunable Terahertz Meta-Surface with Graphene Cut-Wires," ACS Photonics, 2 [1] 151-56 (2015). https://doi.org/10.1021/ph500366z
  97. Y. Fan, Z. Wei, Z. Zhang, and H. Li, "Enhancing Infrared Extinction and Absorption in a Monolayer Graphene Sheet by Harvesting the Electric Dipolar Mode of Split Ring Resonators," Opt. Lett., 38 [24] 5410-13 (2013). https://doi.org/10.1364/OL.38.005410
  98. T. V. Teperik, F. G. De Abajo, A. Borisov, M. Abdelsalam, P. Bartlett, Y. Sugawara, and J. Baumberg, "Omnidirectional Absorption in Nanostructured Metal Surfaces," Nature Photon., 2 [5] 299-301 (2008). https://doi.org/10.1038/nphoton.2008.76
  99. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, "Tunable Large Resonant Absorption in a Midinfrared Graphene Salisbury Screen," Phys. Rev. B, 90 [16] 165409 (2014). https://doi.org/10.1103/PhysRevB.90.165409
  100. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, "A Perfect Absorber Made of a Graphene Micro-Ribbon Metamaterial," Opt. Express, 20 [27] 28017-24 (2012). https://doi.org/10.1364/OE.20.028017
  101. A. Andryieuski and A. V. Lavrinenko, "Graphene Metamaterials based Tunable Terahertz Absorber: Effective Surface Conductivity Approach," Opt. Express, 21 [7] 9144-55 (2013). https://doi.org/10.1364/OE.21.009144
  102. P.-Y. Chen, H. Huang, D. Akinwande, and A. Alu, "Graphene-based Plasmonic Platform for Reconfigurable Terahertz Nanodevices," ACS Photonics, 1 [8] 647-54 (2014). https://doi.org/10.1021/ph500046r
  103. S. F. Shi, B. Zeng, H. L. Han, X. Hong, H. Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, "Optimizing Broadband Terahertz Modulation with Hybrid Graphene/Metasurface Structures," Nano Lett., 15 [1] 372-77 (2015). https://doi.org/10.1021/nl503670d
  104. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, "Monolayer Graphene Sensing Enabled by the Strong Fano-Resonant Metasurface," Nanoscale, 8 [39] 17278-84 (2016). https://doi.org/10.1039/C6NR01911K
  105. Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, "Dual Control of Active Graphene-Silicon Hybrid Metamaterial Devices," Carbon, 90 146-53 (2015). https://doi.org/10.1016/j.carbon.2015.04.015
  106. N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, "Electrically Tunable Damping of Plasmonic Resonances with Graphene," Nano Lett., 12 [10] 5202-6 (2012). https://doi.org/10.1021/nl302322t
  107. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, "Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas," Nano Lett., 13 [3] 1257-64 (2013). https://doi.org/10.1021/nl3047943
  108. Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, "High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection," Nano Lett., 14 [7] 3749-54 (2014). https://doi.org/10.1021/nl500602n
  109. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, and A. B. Khanikaev, "Inductive Tuning of Fano-Resonant Metasurfaces Using Plasmonic Response of Graphene in the Mid-Infrared," Nano Lett., 13 [3] 1111-17 (2013). https://doi.org/10.1021/nl304476b
  110. D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, "Tunable Nonlinear Graphene Metasurfaces," Phys. Rev. B, 92 [16] 161406 (2015). https://doi.org/10.1103/PhysRevB.92.161406
  111. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, "Wide Wavelength Tuning of Optical Antennas on Graphene with Nanosecond Response Time," Nano Lett., 14 [1] 214-19 (2013). https://doi.org/10.1021/nl403751p
  112. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano Resonance in Plasmonic Nanostructures and Metamaterials," Nature Mater., 9 [9] 707-15 (2010). https://doi.org/10.1038/nmat2810
  113. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano Resonances in Nanoscale Structures," Rev. Mod. Phys., 82 [3] 2257 (2010). https://doi.org/10.1103/RevModPhys.82.2257
  114. B. Zhao, J. Zhao, and Z. Zhang, "Enhancement of Near-Infrared Absorption in Graphene with Metal Gratings," Appl. Phys. Lett., 105 [3] 031905 (2014). https://doi.org/10.1063/1.4890624
  115. A. Boltasseva and H. A. Atwater, "Low-Loss Plasmonic Metamaterials," Science, 331 [6015] 290-91 (2011). https://doi.org/10.1126/science.1198258
  116. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for Better Plasmonic Materials," Laser Photonics Rev., 4 [6] 795-808 (2010). https://doi.org/10.1002/lpor.200900055
  117. C. Argyropoulos, "Enhanced Transmission Modulation Based on Dielectric Metasurfaces Loaded with Graphene," Opt. Express, 23 [18] 23787-97 (2015). https://doi.org/10.1364/OE.23.023787
  118. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, "Spectrally Selective Chiral Silicon Metasurfaces based on Infrared Fano Resonances," Nat. Commun., 27 [5] 3892 (2014).
  119. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, "Strong Field Enhancement and Light-Matter Interactions with All-Dielectric Metamaterials based on Split Bar Resonators," Opt. Express, 22 [25] 30889-98 (2014). https://doi.org/10.1364/OE.22.030889
  120. S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, and J. Vuckovic, "Control of Two-Dimensional Excitonic Light Emission via Photonic Crystal," 2D Mater., 1 [1] 011001 (2014). https://doi.org/10.1088/2053-1583/1/1/011001
  121. R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, "Hybrid Airy Plasmons with Dynamically Steerable Trajectories," Nanoscale, 9 [4] 1449-56 (2017). https://doi.org/10.1039/C6NR05500A
  122. R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker Jr, J. Hone, and D. Englund, "Enhanced Photodetection in Graphene-Integrated Photonic Crystal Cavity," Appl. Phys. Lett., 103 [24] 241109 (2013). https://doi.org/10.1063/1.4839235
  123. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, "Electrical Control of Silicon Photonic Crystal Cavity by Graphene," Nano Lett., 13 [2] 515-18 (2013). https://doi.org/10.1021/nl3039212
  124. Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, "Photonic Band Gap of a Graphene-Embedded Quarter-Wave Stack," Phys. Rev. B, 88 [24] 241403 (2013). https://doi.org/10.1103/PhysRevB.88.241403
  125. R. Li, H. Wang, B. Zheng, S. Dehdashti, E. Li, and H. Chen, "Bistable Scattering in Graphene-Coated Dielectric Nanowires," Nanoscale, 9 8449-57 (2017). https://doi.org/10.1039/C7NR03056H
  126. R. Li, X. Lin, S. Lin, X. Zhang, E. Li, and H. Chen, "Graphene Induced Mode Bifurcation at Low Input Power," Carbon, 98 463-67 (2016). https://doi.org/10.1016/j.carbon.2015.11.029
  127. R. Li, X. Lin, S. Lin, X. Liu, and H. Chen, "Tunable Deep-Subwavelength Superscattering Using Graphene Monolayers," Opt. Lett., 40 [8] 1651-54 (2015). https://doi.org/10.1364/OL.40.001651
  128. R. Li, X. Lin, S. Lin, X. Liu, and H. Chen, "Atomically Thin Spherical Shell-Shaped Superscatterers based on a Bohr Model," Nanotechnology, 26 [50] 505201 (2015). https://doi.org/10.1088/0957-4484/26/50/505201
  129. R. Li, B. Zheng, X. Lin, R. Hao, S. Lin, W. Yin, E. Li, and H. Chen, "Design of Ultracompact Graphene-Based Superscatterers," IEEE J. Sel. Top. Quantum Electron., 23 [1] 130-37 (2017). https://doi.org/10.1109/JSTQE.2016.2537267
  130. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, "Plasmon Resonance Enhanced Multicolour Photodetection by Graphene," Nat. Commun., 2 579 (2011). https://doi.org/10.1038/ncomms1589
  131. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, "Strong Plasmonic Enhancement of Photovoltage in Graphene," Nat. Commun., 2 458 (2011). https://doi.org/10.1038/ncomms1464

Cited by

  1. Phosphorus Doping of Si Nanosheets by Spin-on Dopant Proximity pp.2093-6788, 2018, https://doi.org/10.1007/s13391-018-00100-z
  2. Recent Progress on Graphene-Functionalized Metasurfaces for Tunable Phase and Polarization Control vol.9, pp.3, 2017, https://doi.org/10.3390/nano9030398
  3. Tunable optical meta-surface using graphene-coated spherical nanoparticles vol.9, pp.7, 2017, https://doi.org/10.1063/1.5101000
  4. Artificial Metaphotonics Born Naturally in Two Dimensions vol.120, pp.13, 2017, https://doi.org/10.1021/acs.chemrev.9b00592
  5. Terahertz plasmonic nanotrapping with graphene coaxial apertures vol.102, pp.5, 2017, https://doi.org/10.1103/physreva.102.053507
  6. Recent Advances in Terahertz Photonic Technologies Based on Graphene and Their Applications vol.2, pp.6, 2017, https://doi.org/10.1002/adpr.202000168
  7. Plasmon Resonances of Graphene-Dielectric-Metal Structures Calculated by the Method of Recurrence Relations vol.16, pp.6, 2017, https://doi.org/10.1007/s11468-021-01466-x