DOI QR코드

DOI QR Code

Absence of Distinctively High Grain-Boundary Impedance in Polycrystalline Cubic Bismuth Oxide

  • Received : 2017.06.26
  • Accepted : 2017.08.08
  • Published : 2017.09.30

Abstract

In this work, we studied a fluorite structure oxides: Yttria stabilized zirconia, (YSZ); Gd doped $CeO_2$ (GDC); erbia stabilized $Bi_2O_3$ (ESB); Zr doped erbia stabilized $Bi_2O_3$ (ZESB); Ca doped erbia stabilized $Bi_2O_3$ (CESB) in the temperature range of 250 to $600^{\circ}C$ using electrochemical impedance spectroscopy (EIS). As is well known, grain boundary blocking effect was observed in YSZ and GDC. However, there is no grain boundary effect on ESB, ZESB, and CESB. The Nyquist plots of these materials exhibit a single arc at low temperature. This means that there is no space charge effect on ${\delta}-Bi_2O_3$. In addition, impedance data were analyzed by using the brick layer model. We indirectly demonstrate that grain boundary ionic conductivity is similar to or even higher than bulk ionic conductivity on cubic bismuth oxide.

Keywords

References

  1. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  2. A. M. Azad, S. Larose, and S. A. Akbar, "Bismuth Oxide-based Solid Electrolytes for Fuel Cells," J. Mater. Sci., 29 [16] 4135-51 (1994). https://doi.org/10.1007/BF00414192
  3. V. V. Kharton, F. M. B. Marques, and A. Atkinson, "Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review," Solid State Ionics, 174 [1] 135-49 (2004). https://doi.org/10.1016/j.ssi.2004.06.015
  4. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt, "Oxide Ion Conducting Solid Electrolytes based on $Bi_2O_3$," Solid State Ionics, 89 [3-4] 179-96 (1996). https://doi.org/10.1016/0167-2738(96)00348-7
  5. N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldinger, "Bismuth based Oxide Electrolytes-Structure and Ionic Conductivity," J. Eur. Ceram. Soc., 19 [10] 1801-26 (1999). https://doi.org/10.1016/S0955-2219(99)00009-6
  6. M. Mogensen, N. M. Sammers, and G. A. Tompsett, "Physical, Chemical, and Electrochemical Properties of Pure and Doped Ceria," Solid State Ionics, 129 [1] 63-94 (2000). https://doi.org/10.1016/S0167-2738(99)00318-5
  7. B. C. H. Steele, "Material Science and Engineering: The Enabling Technology for the Commercialisation of Fuel Cell Systems," J. Mater. Sci., 36 [5] 1053-68 (2001). https://doi.org/10.1023/A:1004853019349
  8. P. D. Battle, C. R. A. Catlow, J. W. Heap, and L. M. Moroney, "Structural and Dynamical Studies of ${\delta}$-$Bi_2O_3$ Oxide-Ion Conductors II. A Structural Comparison of $(Bi_2O_3)_{1-x}(M_2O_3)_x$ for M = Y, Er and Yb," J. Solid State Chem., 67 [1] 42-50 (1987). https://doi.org/10.1016/0022-4596(87)90336-7
  9. X. Guo, W. Sigle, and J. Maier, "Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity," J. Am. Ceram. Soc., 86 [1] 77-87 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03281.x
  10. H. J. Avila-Paredes, K. Choi, C. T. Chen, and S. Kim, "Dopant-Concentration Dependence of Grain-Boundary Conductivity in Ceria: A Space-Charge Analysis," J. Mater. Chem., 19 [27] 4837-42 (2009). https://doi.org/10.1039/b904583j
  11. X. Guo and J. Maier, "Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis," J. Electrochem. Soc., 148 [3] E121-26 (2001). https://doi.org/10.1149/1.1348267
  12. X. Guo, W. Sigle, J. Fleig, and J. Maier, "Role of Space Charge in the Grain Boundary Blocking Effect in Doped Zirconia," Solid State Ionics, 154 555-61 (2002).
  13. N. M. Beekmans and L. Heyne, "Correlation between Impedance, Microstructure and Composition of Calcia-Stabilized Zirconia," Electrochim. Acta, 21 [4] 303-10 (1976). https://doi.org/10.1016/0013-4686(76)80024-2
  14. S. P. S. Badwal, "Grain Boundary Resistivity in Zirconia-based Materials: Effect of Sintering Temperatures and Impurities," Solid State Ionics, 76 [1-2] 67-80 (1995). https://doi.org/10.1016/0167-2738(94)00236-L
  15. M. Aoki, Y. M. Chiang, I. Kosacki, L. Lee, H. Tuller, and Y. Liu, "Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia," J. Am. Ceram. Soc., 79 [5] 1169-80 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08569.x
  16. X. Guo and R. Waser, "Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors: Acceptor-doped Zirconia and Ceria," Prog. Mater. Sci., 51 [2] 151-210 (2006). https://doi.org/10.1016/j.pmatsci.2005.07.001
  17. S. Kim, J. Fleig, and J. Maier, "Space Charge Conduction: Simple Analytical Solutions for Ionic and Mixed Conductors and Application to Nanocrystalline Ceria," Phys. Chem. Chem. Phys., 5 [11] 2268-73 (2003). https://doi.org/10.1039/B300170A
  18. Y. Lei, Y. Ito, N. D. Browning, and T. J. Mazanec "Segregation Effects at Grain Boundaries in Fluorite-Structured Ceramics," J. Am. Ceram. Soc., 85 [9] 2359-63 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00460.x
  19. W. Lee, H. J. Jung, M. H. Lee, Y. B. Kim, J. S. Park, R. Sinclair, and F. B. Prinz, "Oxygen Surface Exchange at Grain Boundaries of Oxide Ion Conductors," Adv. Funct. Mater., 22 [5] 965-71 (2012). https://doi.org/10.1002/adfm.201101996
  20. P. Duran, J. R. Jurado, C. Moure, N. Valverde, and B. C. H. Steele, "High Oxygen Ion Conduction in Some $Bi_2O_3$-$Y_2O_3(Er_2O_3)$ Solid Solutions," Mater. Chem. Phys., 18 [3] 287-94 (1987). https://doi.org/10.1016/0254-0584(87)90142-8
  21. M. F. Yan, R. M. Cannon, and H. K. Bowen, "Space Charge, Elastic Field, and Dipole Contributions to Equilibrium Solute Segregation at Interfaces," J. Appl. Phys., 54 [2] 764-78 (1983). https://doi.org/10.1063/1.332035
  22. R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Cryst. A, 32 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  23. F. A. Kroger and H. J. Vink, "Relations betwwen the Concentration of Imperfections in Crystalline Solids," pp. 307-435 in Solid State Physics, Vol. 3, Ed. by F. Seitz, & D. Turnbull, Academic press, New York, 1956.
  24. H. A. Harwig and A. G. Gerards, "The Polymorphism of Bismuth Sesquioxide," Thermochim. Acta, 28 [1] 121-31 (1979). https://doi.org/10.1016/0040-6031(79)87011-2
  25. M. J. Verkerk, K. Keizer, and A. J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3$-$Er_2O_3$ System," J. Appl. Electrochem., 10 [1] 81-90 (1980). https://doi.org/10.1007/BF00937342
  26. N. Bonanos, B. C. H. Steele, and E. P. Butler, Impedance Spectroscopy; 1st ed., pp. 191-238, Ed. by J. R. MacDonald, Wiley and Sons, New York, 1988.
  27. H. Nafe, "Ionic Conductivity of $ThO_2$-and $ZrO_2$-based Electrolytes between 300 and 2000 K," Solid State Ionics, 13 [3] 255-63 (1984). https://doi.org/10.1016/0167-2738(84)90040-7
  28. G. M. Christie and F. P. F. Van Berkel, "Microstructure-Ionic Conductivity Relationships in Ceria-Gadolinia Electrolytes," Solid State Ionics, 83 [1-2] 17-27 (1996). https://doi.org/10.1016/0167-2738(95)00155-7
  29. S. M. Haile, L. W. David, and J. Campbell, "The Role of Microstructure and Processing on the Proton Conducting Properties of Gadolinium-doped Barium Cerate," J. Mater. Res., 13 [6] 1576-95 (1998). https://doi.org/10.1557/JMR.1998.0219
  30. E. Ruiz-Trejo, J. D. Sirman, Y. M. Baikov, and J. A Kilner, "Oxygen Ion Diffusivity, Surface Exchange and Ionic Conductivity in Single Crystal Gadolinia Doped Ceria," Solid State Ionics, 113 565-69 (1998).
  31. K. Z. Fung and A. V. Virkar, "Phase Stability, Phase Transformation Kinetics, and Conductivity of $Y_2O_3$-$Bi_2O_3$ Solid Electrolytes Containing Aliovalent Dopants," J. Am. Ceram. Soc., 74 [8] 1970-80 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07817.x
  32. R. D. Bayliss, S. N. Cook, S. Kotsantonis, R. J. Chater, and J. A. Kilner "Oxygen Ion Diffusion and Surface Exchange Properties of the ${\alpha}$-and ${\delta}$-phases of $Bi_2O_3$," Adv. Energy Mater., 4 [10] 1301575 (2014). https://doi.org/10.1002/aenm.201301575

Cited by

  1. Impact of fabrication temperature on the stability of yttria doped bismuth oxide ceramics vol.338, pp.None, 2017, https://doi.org/10.1016/j.ssi.2019.05.013