DOI QR코드

DOI QR Code

Chloride Diffusion Coefficient Evaluation in 1 Year-Cured OPC Concrete under Loading Conditions and Cold Joint

하중조건과 콜드조인트를 고려한 1년 양생된 OPC 콘크리트의 염화물 확산계수 평가

  • 오경석 (한남대학교 건설시스템 공학과) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2017.02.15
  • Accepted : 2017.04.26
  • Published : 2017.09.01

Abstract

Cold joint caused by construction delay is vulnerable to shear stress and it allows more rapid chloride penetration and diffusion. In the paper, investigation of chloride diffusion coefficient is performed for 1-year cured concrete considering compressive and tensile loading level and cold joint. The results are compared with the previous results in 91-day cured concrete. In the 1-year cured concrete without loading, 10.7% and 10.5% of diffusion reduction are evaluated for those in 91-day cured concrete, respectively. The reduction ratios are almost similar however the result in cold joint concrete shows much higher values. The results in 1-year cured concrete under 30% and 60% of compressive loading show reduction of chloride diffusion by 10.9% and 5.8% compared with 91-day cured results, which is caused by steady hydration of cement particles, so called, time effect. In the case of tensile loading, the differences in results are not significant regardless of time effect and cold joint since micro cracks which is weak point of concrete is much dominant despite of long term curing.

시공지연 등으로 발생한 콜드조인트는 전단력에 취약하며 염화물 침투 및 확산을 촉진시킨다. 본 연구는 압축 및 인장하중과 콜드조인트 조건을 고려한 1년 양생된 콘크리트의 염화물 확산계수를 분석하였으며 선행연구인 91일 재령의 결과와 비교하였다. 91일 재령결과와 비교할 때, 하중을 재하하지 않은 일반적인 경우에는 건전부에서는 10.7%, 콜드조인트에서는 10.5%로 낮게 평가 되었다. 건전부와 콜드조인트의 감소율의 차이는 비슷하지만 염화물 확산계수는 콜드조인트에서 크게 발생하였다. 압축력 30%의 경우 건전부는 하중재하시 발생된 공극압밀로 인하여 확산계수가 감소하였다. 콜드조인트 콘크리트의 경우 365일 재령은 91일 재령보다 압축력 30%일 경우 10.9%, 압축력 60%일 경우 5.8% 확산계수가 낮게 평가되었는데, 이는 장기간 수중양생에 따른 지속적인 수화반응에 의해 확산계수가 낮게 평가되었기 때문이다. 인장력의 경우 압축부와는 다르게 동일 수준의 인장하중과 재령, 콜드조인트 유 무에 따른 확산계수의 차이가 비교적 크지 않았다. 이는 콘크리트가 1년 재령임에도 불구하고 인장력에 취약한 재료적 특성인 미세균열이 지배적인 영향으로 작용하였기 때문이다.

Keywords

References

  1. ACI 224.3R-95 (2001), Joints in Concrete Construction, American Concrete Institute, USA, Reapproved.
  2. Broomfiled, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, 1-15.
  3. Choi, S. -J., Kang, S. -P., Kim, S. -C., and Kwon, S. -J. (2015), Analysis Technique on Water Permeability in Concrete with Cold Joint considering Micro Pore Structure and Mineral Admixture, Advances in Materials Science and Engineering, Article ID 610428, 1-10.
  4. Goripalan, N., Sirivivatnanon, V., and Lim, C. C. (2000), Chloride diffusivity of concrete cracked in flexure, Cement and Concrete Research, Pergamon, 442-452.
  5. JSCE (2000), Concrete Cold Joint Problems and Countermeasures, Concrete Library, 103.
  6. Kermani, A. (1991), Permeability of stressed concrete, Building Research and Information, 19(6), 360-366. https://doi.org/10.1080/09613219108727156
  7. Kim, D. -H., Lim, N. -G., and Horiguchi, T. (2009), Effect of Compressive Loading on the Chloride Penetration of Concrete Mixed with Granulated Blast Furnace Slag, Journal of the Korea Institute of Building Construction, 9(6), 71-78. https://doi.org/10.5345/JKIC.2009.9.6.071
  8. Kim, T, -S., Jung, S, -H., Choi, Y, -C., and Song, H, -W. (2009), An Experimental Study on Relation between Chloride Diffusivity and Micro structural Characteristics for GGBS Concrete, Journal of the Korea Concrete Institute, 21(5), 639-647. https://doi.org/10.4334/JKCI.2009.21.5.639
  9. Kobayashi, K., and Takemoto, Y. (2001), Effect of Ground Granulated Blast Furnace Slag on Corrosion protection, Pro. of the Japan Concrete Institute, 23(2), 553-558.
  10. Kwon, S. -J., Na, U. -J., Park, S. -S., and Jung, S. -H. (2009), Service Life Prediction of Concrete Wharves with Early Aged Crack: Probabilistic Approach for Chloride Diffusion, Structural Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  11. Kwon, S. -J., and Park, S. -G. (2007), A Study on Estimation for Chloride Diffusivity in Cracked Concrete in Harbor Structures through Field Survey, Journal of The Korean Society of Civil Engineers, 27(5A), 745-752.
  12. Kwon, S. -J., and Park, S. -G. (2013), Analysis Technique for Chloride Penetration in High Performance Concrete Behavior Considering Time-Dependent Accelerated Chloride Diffusivity, Journal of the Korea Concrete Institute, 25(2), 145-153. https://doi.org/10.4334/JKCI.2013.25.2.145
  13. Lee, S. -T. (2014), Effect of Fineness Levels of GGBFS on the Strength and Durability of concrete, Journal of the Korean Society of Civil Engineers, 34(4), 1095-1104. https://doi.org/10.12652/Ksce.2014.34.4.1095
  14. Leng, F., Feng, and N., Lu, X. (2000), An Experiment Study on the Properties of Resistance to Diffusion of Chloride Ions of Fly Ash and Blast Furnace Slag Concrete, Cement and Concrete Research. 30(6), 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  15. Lim, M. -K., Park, M. -Y., and Jung, S. -J. (2007), A Study of the Strength and Durability Properties on Recycled Fine Aggregate Mortar and Blain of Blast Furnace Slag, Journal of the architectural institute of Korea, 23(10), 91-98.
  16. Mangat, P. S., and Gurusamy, K. (1987), Chloride Diffusion in Steel Fiber Reinforced Marine Concrete, Cement and Concrete Research, 17(2), 385-396. https://doi.org/10.1016/0008-8846(87)90002-0
  17. Mehta, P. K., and Monteiro, P. J. (2013), Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education.
  18. Moon, H. -Y., Kim, H. -S., and Moon, J. -H. (2001), Accelerated Test Methods for Diffusion Coefficient of Chloride Ions into Concrete Using Potential Difference, Journal of the Korea Concrete Institute, 21(3-A), 403-412.
  19. Mun, J. -M. (2016), Chloride Diffusion Coefficients in Cold Joint Concrete Considering Loading Conditions and Slag, Hannam University.
  20. Oner, M., Erdogdu, K. Gunlu, A. (2003), Effect of Components Fineness on Strength of Blast Furnace Slag Cement, Cement and Concrete Research, 33(4), 463-469. https://doi.org/10.1016/S0008-8846(02)00713-5
  21. Park, S. -S., Kwon, S. -J., and Jung, S. -H. (2012), Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation, Construction and Building Materials, 29(2), 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  22. RILEM. (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, 28-52.
  23. Song, H. -W., Pack, S. -W., Lee, C. -H., and Kwon, S. -J. (2006), Service Life Prediction of Concrete Structures Under Marine Environment Considering Coupled Deterioration, Journal of Restoration of Build Monuments, 12(4), 265-284.
  24. Tang, L., and Nilsson, L. O. (1992), Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electrical Field, ACI Materials Journal, 89(1), 49-53.
  25. Thomas, M. D. A., and Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 12-56.