DOI QR코드

DOI QR Code

Evaluation Concept of Progressive Collapse Sensitivity of Steel Moment Frame using Energy-based Approximate Analysis

에너지 기반 근사해석을 이용한 철골모멘트골조의 연쇄붕괴 민감도 평가방법

  • 노삼영 (한양대학교 건축학부) ;
  • 박기환 (한양대학교 건축시스템공학과) ;
  • 이상윤 (한양대학교 건축시스템공학과)
  • Received : 2017.05.18
  • Accepted : 2017.06.12
  • Published : 2017.09.01

Abstract

In this study, the prototype structure of seismically designed steel moment frame was analyzed statically and dynamically in order to demonstrate the applicability of energy-based approximate analysis with the dynamic effect of sudden column loss in the evaluation of the collapse resistance and a method for assessing the sensitivity to progressive collapse was proposed. For the purpose of comparing the structural behavior of buildings with different structural systems, the sensitivity of the structure to the sudden removal of vertical members can be used as a significant measure. The energy-based approximate analysis prediction for the prototype structure considered in the study showed good agreement with the dynamic analysis result. In the sensitivity evaluation, the structural robustness index that indicates the ability of a structure to resist collapse induced by abnormal loads was used. It was confirmed that the proposed methods can be used conveniently and rationally in progressive collapse analysis and design.

본 연구는 연쇄붕괴 저항성능 평가 시 기둥의 순간적인 제거에 따른 동적효과가 반영된 에너지 기반 근사해석의 적용성을 확인하기 위해 내진 설계된 철골모멘트골조의 예제구조물을 대상으로 분석하였으며, 이를 통해 구조 강건성을 산정하여 연쇄붕괴에 대한 민감도를 평가할 수 있는 방법을 제시하였다. 예제구조물에 대한 적용을 통해 비선형 정적해석 결과를 이용한 에너지 기반 근사해석과 직접동적해석에 대한 결과가 잘 일치하는 것을 검증하였으며, 다른 구조시스템을 가지는 건물의 연쇄붕괴에 대한 구조적 내력성능을 비교하기 위한 수단으로 구조물의 민감도를 평가하였다. 이는 비정상하중에 대하여 구조물이 연쇄붕괴에 저항할 수 있는 최대보유 잔류내력 성능인 구조 강건성을 이용하였고, 본 연구에서 제시한 방법을 통해 연쇄붕괴 해석 및 설계에 편리하게 활용될 수 있음을 확인하였다.

Keywords

References

  1. Alashker, Y., El-Tawil, S., and Sadek, F. (2010), Progressive Collapse Resistance of Steel-Concrete Composite Floors, Journal of Structural Engineering, 136(10), 1187-1196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000230
  2. ASCE (2002), Minimum design loads for buildings and other structures (ASCE 7-02), American Society of Civil Engineers.
  3. ASCE (2010), Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), American Society of Civil Engineers.
  4. Bao, Y., Main, J. A., and Noh, S. Y. (2017), Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings, Journal of Structural Engineering, 143(6), 04017066. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001795
  5. British Standards Institution (2001), Structural Use of Steelwork in Buildings - Part 1: Code of Practice for Design-rolled and Welded Sections (BS 5950), London: BSI.
  6. CEN (2006), Eurocode 1 - Actions on structures - Part 1-7: General actions - Accidental actions, European Committee for Standardization.
  7. Design Guidelines for Terror Prevention in Buildings (2010), Ministry of Land, Infrastructure and Transport.
  8. DoD (2005), Unified facilities criteria; DoD design of buildings to resist progressive collapse, UFC 4-023-03, U.S. Army Corps of Engineering.
  9. FEMA-356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of buildings, Federal Emergency Management Agency.
  10. GSA (2003), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, Office of Chief Architect.
  11. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., and Nethercot, D. A. (2008), Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework, Journal of Engineering Structures, 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
  12. Kim, S. W., Lee, C. H., and Lee, K. K. (2014), Effects of Composite Floor Slab on Progressive Collapse Resistance of Steel Moment Frames, Journal of the Architectural Institute of Korea, 30(2), 3-10.
  13. Kim, T. W., Kim, T. J., Kim, J. K., and Kim, S. D. (2008), Collapse Analysis of Steel Moment Frames with Seismic Connections, Journal of the Architectural Institute of Korea, 24(5), 3-10.
  14. Lee, C. H., Kim, S. W., Lee, K. K., and Han, K. H. (2009), Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum, Journal of Korean Society of Steel Construction, 21(3), 267-275.
  15. Main, J. A. (2014), Composite Floor Systems under Column Loss: Collapse Resistance and Tie Force Requirements, Journal of Structural Engineering, 140(8), A4014003. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000952
  16. Marjanishvili, S. M. (2004), Progressive Analysis Procedure for Progressive Collapse, Journal of Performance of Constructed Facilities, 18(2), 79-85. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:2(79)
  17. Sadek, F., Main, J. A., Lew, H. S., Robert, S. D., Chiarito, V. P., and El-Tawil, S. (2010), An Experimental and Computational Study of Steel Moment Connections under a Column Removal Scenario, NIST Technical Note 1669, National Institute of Standards and Technology, Gaithersburg, MD.
  18. Starossek, U. and Haberland, M. (2010), Disproportionate Collapse: Terminology and Procedures, Journal of Constructed Facilities, 24(6), 519-528. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000138
  19. Starossek, U., and Haberland, M. (2011), Approaches to measures of structural robustness, Journal of Structure and Infrastructure Engineering, 7(7-8), 625-631. https://doi.org/10.1080/15732479.2010.501562