DOI QR코드

DOI QR Code

The Fundamental Properties of High Fluidity Mortar with Activated Ternary Blended Slag Cement

활성화된 삼성분계 고유동 모르타르의 기초특성

  • 배주룡 (부산대학교 건설융합학부 토목공학전공) ;
  • 김태완 (부산대학교 건설융합학부 토목공학전공) ;
  • 김인태 (부산대학교 건설융합학부 토목공학전공) ;
  • 김형석 (부산대학교 건설융합학부 토목공학전공)
  • Received : 2017.07.17
  • Accepted : 2017.08.23
  • Published : 2017.11.01

Abstract

This research presents the results of the strength and drying shrinkage properties to study the effect of ground granulated blast furnace slag(GGBFS), fly ash(FA) and calcium sulfoaluminate(CSA) for activated ternary blended slag cement. The activated ternary blended cement(ATBC) mortar were prepared having a constant water-cementitious materials ratios of 0.4. The GGBFS contents ratios of 100%, 80%, 70% and 60%, FA replacement ratios of 10%, 20%, 30% and 40%, CSA ratios of 0%, 10%, 20% and 30% were designed. The superplasticizer of polycarboxylate type were used. The activator was used of 10% sodium hydroxide(NaOH) + 10% sodium silicate($Na_2SiO_3$) by weight of binder. Test were conducted for mini slump, setting time, V-funnel, water absorption, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA contents for all mixtures. Moreover, the setting time, water absorption ratios and drying shrinkage ratio decrease with and increase in CSA. One of the major reason for the increase of strength and decrease of drying shrinkage is the accelerated reactivity of GGBFS with alkali activator and CSA. The CSA contents is the main parameter to explain the strength development and decreased drying shrinkage in the ATBC.

본 연구는 고로슬래그 미분말(GGBFS), 플라이 애시(FA) 그리고 칼슘설포알리미네이트(CSA)를 혼합한 활성화된 삼성분계 시멘트의 강도와 건조수축에 대한 연구결과이다. 활성화된 삼성분계 시멘트(ATBC) 모르타르의 물-결합재 비는 0.4이다. GGBFS의 치환율은 100%, 80%, 70% 그리고 60%이며, FA는 10%, 20%, 30% 그리고 40%, CSA는 0%, 10%, 20% 그리고 30% 치환비율로 설정하였다. 혼화제는 폴리카르폭실계를 사용하였다. 활성화제는 결합제 질량에 대해 10% 수산화나트륨(NaOH) + 10% 규산나트륨($Na_2SiO_3$)을 사용하였다. 실험은 미니 슬럼프, 응결시간, V-funnel, 물흡수율, 압축강도 그리고 건조수축을 측정하였다. 실험결과 모든 배합에서 혼화제의 양, V-funnel 그리고 압축강도는 CSA 양이 증가함에 따라 증가하였다. 또한 응결시간, 물 흡수율과 건조수축은 CSA가 증가함에 따라 감소하였다. 강도증가와 건조수축 감소의 가장 큰 원인 중 하나는 CSA와 활성화제에 의한 GGBFS의 수화반응 촉진 때문이다. CSA의 혼합양은 활성화된 삼성분계 시멘트의 강도 증가와 건조수축 감소에 중요 영향요인이다.

Keywords

References

  1. Abdalqader, A. F., Jin, E., and Al-Tabbaa, A. (2016), Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures, Journal of Cleaner Production, 113, 66-75. https://doi.org/10.1016/j.jclepro.2015.12.010
  2. Atis C. D., Bilim, C., Celik, O., and Karahan, O. (2009), Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construction and Building Materials, 23, 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  3. Bernal, S. A. and Provis, J. L. (2014), Durability of Alkali-Activated Materials: Progress and Perspectives, Journal of American Ceramic Society, 97, 997-1008. https://doi.org/10.1111/jace.12831
  4. Bernardo, G., Telesca, A., and Valenti, G. L. (2006), A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages, Cement and Concrete Research, 36, 1042-1047. https://doi.org/10.1016/j.cemconres.2006.02.014
  5. Boukendakdji, O., Kadri E.-H., and Kenai, S. (2012), Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete, Cement & Concrete Composites, 34, 583-590. https://doi.org/10.1016/j.cemconcomp.2011.08.013
  6. Brough, A. R., and Atkinson, A. (2002), Sodium silicated-based, alkali-activated mortars Part I. Strength, hydration and microstructure, Cement and Concrete Research, 32, 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2
  7. Burciaga-Diaz, O. and Escalante-Garcia, J. I. (2013), Struction, Mechanism of Reaction, and Strength of an Alkali-Activated Blast-Furnace Slag, Journal of American Ceramic Society, 96, 3939-3948. https://doi.org/10.1111/jace.12620
  8. Chaunsali, P., and Mondal, P. (2016), Physico-chemical interaction between mineral admixtures and OPC-calcium sulfoaluminate (CSA) cements and its influence on early-age expansion, Cement and Concrete Research, 80, 10-20. https://doi.org/10.1016/j.cemconres.2015.11.003
  9. Chi, M. (2012), Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, Construction and Building Materials, 35, 240-245. https://doi.org/10.1016/j.conbuildmat.2012.04.005
  10. Chi, M., Huang, R. (2013), Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40, 291-298. https://doi.org/10.1016/j.conbuildmat.2012.11.003
  11. Choi, Y. W., Kim, K. H., Park, S. J., and Jung, J. G. (2010), High Fludity Concrete, Magazine of the Korea Concrete Institute, 22, 45-47(in Korean, with English abstract).
  12. Collins, F., and Sanjayan, J. G. (2000), Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete, Cement and Concrete Research, 30, 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  13. Deb, P. S., Nath, P., and Sarker, P. K. (2014), The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature, Material and Design, 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001
  14. Escalante-Garcia, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., and Mendoza-Suarez, G. (2003), Hydration Products and Reactivity of Blast-Furnace Slag Activated by Various Alkalis, Journal of American Ceramic Society, 86, 2148-2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  15. Fernandez-Jimenez, A., Palomo, J. G., and Puertas, F. (1999), Alkaliactivated slag mortars Mechanical strength behavior, Cement and Concrete Research, 29, 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4
  16. Gao, X., Yu, Q. L., and Brouwers, H. J. H. (2015), Properties of alkali activated slag-fly ash blends with limestone addition, Cement & Concrete Composites, 59, 119-128. https://doi.org/10.1016/j.cemconcomp.2015.01.007
  17. Garcia-Lodeiro, I., Palomo, A., Fernandez-Jimenez, A., and Macphee, D. E. (2011), Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram $Na_2O-CaO-Al_2O_3-SiO_2-H_2O$, Cement and Concrete Research, 41, 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006
  18. Ismail, I, Bernal, S. A., Provis, J. L., Nicolas, R. S., Brice, D. G., Kilcullen, A. R., Hamdan, S., and S. J. van Deventer, J. (2013), Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Construction and Building Materials, 48, 1187-1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106
  19. Jang, J. G., Lee, N. K., and Lee, H. K. (2014), Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers, Construction and Building Materials, 50, 169-176. https://doi.org/10.1016/j.conbuildmat.2013.09.048
  20. Koh, K. T., Kang, S. T., Park, J. J., Ryu, G. S., Lee, J. H., and Kang, H. J. (2010), Effect of the combined using of fly ash and blast furnace slag as cementitious materials on properties of alkali-activated mortar, Journal of Korean Institute of Resources Recycling, 19, 19-28(in Korean, with English abstract).
  21. Kumar, S., Kumar, R., and Mehrotra, S. P. (2010), Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, Journal of Material Science, 45, 607-615. https://doi.org/10.1007/s10853-009-3934-5
  22. Lee, N. K. and Lee, H. K. (2013), Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 47, 1201-1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107
  23. Lee, N. K., Jang, J. G., and Lee, H. K. (2014), Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages, Cement & Concrete Composites, 53, 239-248. https://doi.org/10.1016/j.cemconcomp.2014.07.007
  24. Marjanovie, N., Komljenovic Z., Nikolic V., and Petrovic R. (2015), Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends, Ceramics International, 41, 1421-1435. https://doi.org/10.1016/j.ceramint.2014.09.075
  25. Nath, P. and Sarker, P. K. (2014), Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Construction and Building Materials, 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  26. Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S. (2008), Alkaliactivated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 22, 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015
  27. Pera, J. and Ambroise, J. (2004), New applications of calcium sulfoaluminate cement, Cement and Concrete Research, 34, 671-676. https://doi.org/10.1016/j.cemconres.2003.10.019
  28. Provis, J. L., Palomo, A., and Shi, C. (2015), Advances in understanding alkali-activated materials, Cement and Concrete Research, 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013
  29. Puertas, F., Martinez-Ramirez, S., Alonso, S., and Vazquez, T. (2000), Alkali-activated flu ash/slag cement Strength behaviour and hydration products, Cement and Concrete Research, 30, 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2
  30. Puligilla, S. and Mondal, P. (2013), Role of slag in microstructural development and hardening of fly ash-slag geopolymer, Cement and Concrete Research, 43, 70-80. https://doi.org/10.1016/j.cemconres.2012.10.004
  31. Rashad, A. M. (2013), A comprehensive overview about the influence of different additives on the properties of alkali-activated slag -A guide for Civil Engineer, Construction and Building Materials, 47, 29-55. https://doi.org/10.1016/j.conbuildmat.2013.04.011
  32. Ravikumar, D. and Neithalath, N. (2012), Effects of activator characteristics on the reaction product formation in slag binders activated using silicate powder and NaOH, Cement & Concrete Composites, 34, 809-818. https://doi.org/10.1016/j.cemconcomp.2012.03.006
  33. Song, K. I., Shin, G. S., Gong, M. H., and Song, J. K. (2013), Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder, Journal of the Korea Concrete Institute, 25, 657-665(in Korean, with English abstract). https://doi.org/10.4334/JKCI.2013.25.6.657
  34. Temuujin, J., van Riessen, A., and Williams, R. (2009), Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, Journal of Hazardous Materials, 167, 82-88. https://doi.org/10.1016/j.jhazmat.2008.12.121
  35. Wang, W. C., Wang, H. Y., and Lo, M. H. (2015), The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration, Construction and Building Materials, 84, 224-229. https://doi.org/10.1016/j.conbuildmat.2014.09.059
  36. Zhang, Z., Li, L., Ma, X., and Wang, H. (2016). Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement, Construction and Building Materials, 113, 237-245. https://doi.org/10.1016/j.conbuildmat.2016.03.043