DOI QR코드

DOI QR Code

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate

후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동

  • 손민재 (충남대학교 건축공학과) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 이상규 (충남대학교 건축공학과) ;
  • 김홍섭 (충남대학교 건축공학과 BK21플러스 사업팀) ;
  • 남정수 (충남대학교 건축공학과)
  • Received : 2017.07.26
  • Accepted : 2017.10.31
  • Published : 2017.11.01

Abstract

In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

본 연구에서는 후크형 강섬유와 PVA 섬유의 혼합비에 따른 하이브리드 섬유보강 시멘트 복합체의 인장거동에 미치는 변형속도의 효과에 대하여 평가하기 위하여, 후크형 강섬유와 PVA 섬유를 각각 1.5+0.5, 1.0+1.0, 0.5+1.0vol.%의 혼합비로 보강한 하이브리드 섬유보강 시멘트 복합체를 제작하였다. 그 결과, 후크형 강섬유보강 시멘트 복합체는 변형속도가 증가함에 따라 섬유와 매트릭스의 부착력이 향상되어 인장강도, 변형능력 및 파괴인성이 크게 향상되었으며, 후크형 강섬유 주변의 매트릭스에 발생하는 마이크로 균열에 의해 직선형으로 인발되는 섬유의 수가 감소하고, 인장강도 점 이후의 응력 저하가 급격하게 발생하였다. 한편, PVA 섬유는 변형속도 $10^{-6}/s$에서는 끊어지는 파괴거동이 나타났으나, 변형속도 $10^1/s$에서는 변형속도가 증가함에 따라 섬유가 인발되는 파괴거동에 의해 다중균열 개수 및 변형능력이 감소하였다. 후크형 강섬유 1.5vol.%, PVA 섬유 0.5vol.%를 혼입한 시험체(HSF1.5PVA0.5)는 PVA가 후크형 강섬유의 주변 매트릭스에 발생하는 마이크로 균열을 억제하여 후크형 강섬유의 인발저항성능을 향상시키기 때문에 가장 높은 인장강도를 나타내었으며, 변형능력 및 파괴인성의 DIF가 크게 향상되었다. 또한, 변형속도 $10^1/s$에서는 후크형 강섬유의 인발저항성능의 증가로 인하여 직선형으로 인발되는 섬유의 수가 증가하기 때문에 인장강도 점 이후의 응력 저하가 감소하여 파괴인성의 시너지는 양의 값을 나타내었다.

Keywords

References

  1. Ahmed, S. F. U. and Maalej, M. (2009), Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites, Construction and Building Materials, 23, 96-106. https://doi.org/10.1016/j.conbuildmat.2008.01.009
  2. Choi, J. I., Koh, K. T., and Lee, B. Y. (2015), Tensile Behavior of Ultra- High Performance Concrete According to Combination of Fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 49-56 https://doi.org/10.11112/jksmi.2015.19.4.049
  3. Islam, A. K. M. A. and Yazdani, N. (2008), Performance of AASHTO girder bridges under blast loading, Engineering Structures, 30(7), 1922-1937. https://doi.org/10.1016/j.engstruct.2007.12.014
  4. Kim, D. J., Park, S. H., Ryu, G. S., and Koh, K. T. (2011), Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers, Construction and Building Materials, 25, 4144- 4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
  5. Kim, N. W., Choi. G. B., Kim, H. S., and Bae, J. S. (2005), A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete, Journal of the Korea institute for Structural Maintenance Inspection, 9(1), 127-134.
  6. Kim, Y. W., Min, K. H., Yang, J. M., and Yoon, Y. S. (2009), Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers, Journal of the Korea Concrete Institute, 21(6), 705-712. https://doi.org/10.4334/JKCI.2009.21.6.705
  7. Lawler, J. S., Wilhelm. T., Zampini, D., and Shah, S. P. (2003), Fracture processes of hybrid fiber-reinforced mortar, Materials and Structures, 36, 197-208. https://doi.org/10.1007/BF02479558
  8. Nam, J. S., Kim, H. S., and Kim, G. Y. (2017), Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions, International Journal of Concrete Structures and Materials, 11(1), 29-43. https://doi.org/10.1007/s40069-016-0179-y
  9. Park, S. H., Kim, D. J., Ryu, G. S., and Koh, K. T. (2012), Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete, Cement & Concrete Composites, 34, 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  10. Tran, T. K. and Kim, D. J. (2017), Synergistic response of blending fibers in ultra-high-performance concrete under high rate tensile loads, Cement and Concrete Composites, 78, 132-145. https://doi.org/10.1016/j.cemconcomp.2017.01.008
  11. Yi, D. R. and Ha, G. J. (2014), Improvement of Structural Performance of RC Beams retrofitted Hybrid Fiber using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(6), 1-10. https://doi.org/10.11112/JKSMI.2014.18.6.001

Cited by

  1. 후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성 vol.25, pp.3, 2017, https://doi.org/10.11112/jksmi.2021.25.3.31