DOI QR코드

DOI QR Code

An Experimental Study of Mechanical Properties of High-strength Concrete

고강도 콘크리트의 역학적 특성에 대한 실험 연구

  • 양인환 (군산대학교 토목공학과) ;
  • 황철성 (가천대학교 토목환경공학과)
  • Received : 2017.10.13
  • Accepted : 2017.10.17
  • Published : 2017.11.01

Abstract

An experimental program was carried out to investigate the mechanical properties of high-strength concrete. High-strength concrete with compressive strengths of 80 to 120 MPa was tested. Test results are presented regarding effect of water-binder ratio on compressive strength and compressive strength gain. In addition, the effect of curing methods on compressive strength, elastic modulus, splitting tensile strength, and modulus of rupture is investigated. Test results of elastic modulus, splitting tensile strength, and modulus of rupture are compared with predictions from the current design recommendations. Predictions of elastic modulus by using KCI recommendation has good agreement with test results. However, predictions of modulus of rupture by using KCI recommendation underestimate the test results. ACI 363R recommendations predict well test results of splitting tensile strength and modulus of rupture. ACI 363R recommendations for predicting splitting tensile strength and modulus of rupture can be used for high-strength concrete with compressive strengths up to 120 MPa.

이 연구에서는 고강도 콘크리트의 역학적 특성을 파악하기 위한 실험연구를 수행하였다. 80~120 MPa 범위의 압축강도를 갖는 고강도 콘크리트를 대상으로 실험연구를 수행하였다. 물-결합재비의 압축강도에 대한 영향, 시간에 따른 압축강도의 발현 및 양생조건의 압축강도에 대한 영향을 분석하였다. 또한, 양생조건에 따른 콘크리트의 탄성계수, 쪼갬인장강도 및 파괴계수 특성을 파악하였다. 탄성계수, 쪼갬인장강도 및 파괴계수의 실험결과와 기존설계코드에 의한 예측결과를 비교하였다. 콘크리트구조기준의 탄성계수 제안식은 실험값을 합리적으로 예측한다. 반면에, 콘크리트구조기준은 파괴계수 실험값을 과소평가하고 있다. ACI 363R의 쪼갬인장강도와 파괴계수 예측값과 실험값은 잘 일치하고 있다. 따라서, ACI 363R의 쪼갬인장강도와 파괴계수 예측식은 120 MPa까지의 고강도 콘크리트에 효과적으로 활용될 수 있다.

Keywords

References

  1. AASHTO LRFD (2014), Bridge Design Specifications, Seventh Edition, American Association of State Highway and Transportation Officials, Washington DC
  2. ACI Committee 318 (2014), Building Code Requirements for Structural Concrete and commentary (318-14), American Concrete Institute, Farmington Hills, Mi, 503.
  3. ACI Committee 363 (2010), Report on High-Strength Concrete(ACI 363R-10), American Concrete Institute, Detroit, 65.
  4. Aitcin, P. C., Miao, B., Cook, W. D., and Mitchell, D. (1994), Effects of Size and Curing on the Cylinder Compressive Strength of normal and High-Strength Concrete, ACI Materials Journal, 91(4), 349-355.
  5. Arshad, A. K., Cook, W. D., and Mitchell, D. (1995), Early Age Compressive Stress-Strain Properties of Low, Medium, and High- Strength Concretes, ACI Materials Journal, 92(6), 617-624.
  6. Asselanis, J. G., Aitcin, P. C., and Mehta, P. K. (1989), Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete, Cement, Concrete, and Aggregates, 11(1), 80-83. https://doi.org/10.1520/CCA10106J
  7. Bartlett, F. M. and MacGregor, J. G. (1994), Assessment of Concrete Strength in Existing Structures, Structural Engineering Report, No. 198, Department of Civil Engineering, University of Alberta, Edmonton, AB, Canada, 297.
  8. Carrasquillo, R. L., Nilson, A. H., and Slate, F. O. (1981), Properties of High Strength Concrete Subject Short-Term Loads, ACI Structural Journal, 78(3), 161-178.
  9. Chin, M. S., Mansur, M. A. and Wee, T. H. (1997), Effects of Shape, Size and Casting Direction of Specimens on Stress-Strain Curves of High-Strength Concrete, ACI Materials Journal, 94(3), 209-218.
  10. Iravani, S. (1996), Mechanical Properties of High-Performance Concrete, ACI Materials Journal, 93(5), 416-425.
  11. KCI (2012), Design Code for Structural Concrete, Korea Concrete Institute.
  12. Legeron, F. and Paultre, P. (2000), Prediction of Modulus of Rupture of Concrete, ACI Materials Journal, 97(2), 193-200.
  13. Mokhtarzadeh, A. and French, C. (2000) Mechanical Properties of High-Strength Concrete with Consideration for Precast Applications, ACI Materials Journal, 97(2), 136-148.
  14. Neville, A. M. (1995), Properties of Concrete, Fourth Edition, New York: J. Wiley, New York, 844.
  15. Parrott, L. J. (1979), Simplified Methods of Predicting the Deformation of Structural Concrete, Development Report, No.3, Cement and Concrete Association, 11.
  16. Sarkar, S. L. and Aitcin, P. C. (1987), Dissolution Rate of Silica Fume in Very High-Strength Concrete, Cement and Concrete Research, 17, 591-601. https://doi.org/10.1016/0008-8846(87)90132-3
  17. Wee, T. H., Chin, M. S., and Mansur, M. A. (1996) Stress-Strain Relationship of High-Strength Concrete in Compression, Journal of Materials in Civil Engineering, 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70)
  18. Zhang, D. and Wu, K. (2001) Fracture Properties of High-Strength Concrete, Journal of Materials in Civil Engineering, 13(1), 86-88. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(86)