
Journal of the Korean Society of Marine Environment & Safety Research Paper

Vol. 23, No. 5, pp. 574-584, August 31, 2017, ISSN 1229-3431(Print) / ISSN 2287-3341(Online) https://doi.org/10.7837/kosomes.2017.23.5.574

11. Introduction

Most the designed and developed of robots are to work in

extreme environments such as ocean bottom, space and hazard

prevention. It is not easy for the people living there because of the

 * First Author : nguyenvantien@vimaru.edu.vn, 061-240-7232

 Corresponding Author : ds4cbt@mmu.ac.kr

high atmosphere, the low temperature and the high risks for the

life of people. However, the robots are capability of replacing

people to reduce the risks. In fact, there are many different types

of robots have been produced for many years, but they can be

classified into two types according to the mobility on the ground.

The first type is Fixed-robot. They don't have the ability of

self-relocation and the second type of the robot is Mobile-robots.

For Mobile-robots, they can freely travel by using the

Optimizing Path Finding based on Dijkstra’s Algorithm for a Quadruped

Walking Robot TITAN-VIII

Van Tien-Nguyen* Byong-Won Ahn** Cherl-O Bae***

* Graduate School, Mokpo National Maritime University, Mokpo 58628, Korea

** Division of Marine Engineering, Mokpo National Maritime University, Mokpo 58628, Korea

*** Division of Marine Engineering & Coast Guard, Mokpo National Maritime University, Mokpo 58628, Korea

족보행 한 4 TITAN-VIII Dijkstra’s Algorithm

최적경 탐색

Van Tien-Nguyen* 안병원** 배철 ***

포해양 학 학원 포해양 학 시스 공학 포해양 학 해양경찰학* , ** , *** ·

Abstract : In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages

over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than

the Wheeled-robot’s. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path,

our approach is based on an algorithm which is called Dijkstra’s algorithm. In the rest of paper, the various posture of the robot is discussed to keep

the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that

an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of

paper.

Key Words : Quadruped Walking Robot, Wheeled Robot, Optimizing path finding, Dijkstra’s algorithm, Joint angle

요 약 : 본 문에 는 보행 종 라 리는 하여 가 짧 경 탐색하여 동하는 방법에 한 연TITAN-VIII

 나타낸다 보행 경우 바퀴 동 에 비해 규칙한 지 동 가능한 점 등 가지고 는 반해 동.

도는 바퀴 동 에 비해 느린 편 다 라 본 문에 는 적지에 도달하 지 시간 최 하는 최적경 탐색 제어방법 제.

시하 다 경 탐색하 해 라 리는 알고리즘 반 하여 적 하 다 또한 항상 정적 . Dijkstra’s algorithm .

지하는 다양한 에 해 도 다루었다 제어 알고리즘 통하여 절각 결정에 필 한 여러 수학방정식.

 제시하 다 그 후 원하는 적 동하고 탐색하는 알고리즘 고안하 고 제안한 방법 결과 실험 하 다. , .

핵심용어 : 족보행 바퀴 동 최적경 탐색 4 , , , Dijkstra’s algorithm, 절각

Optimizing Path Finding based on Dijkstra’s Algorithm for a Quadruped Walking Robot TITAN-VIII

self-locomotion ability. This paper only focuses on the last type

that is Mobile-robots. Therefore, when the word “robot” that is

mentioned in this paper, that mean is Mobile-robots. The

self-locomotion of the robot can be performed in a lot of ways

such as wheels, crawlers and fly. The robots are also separated

into two types of Wheeled-robot and Legged-robot that depends on

the mobility of the robot that is a wheel or a crawler, respectively.

The structure of a robot is mostly mechanical structure to form

a kinematic chain of the robot. In addition, they also include their

integration with sensors, actuator and controller system. For

Wheeled-robot, it is easy to design a mechanism and a controller,

but if the robot must work on the ground which the depression of

a surface is greater than the diameter of wheel then the robot

cannot pass over. The Legged-robot has a locomotion ability that

is better than the Wheeled-robot’s but it is very complex to design

mechanical structure and the keep the stable status of Legged-robot

in a moving situation. Because the kinematics of the legged robot

is nonlinear, it means that the robot’s parameter is varied

according to the time (Chen et al., 2001). However, if the robot

has to work on unfavorable environment like a rough terrain, then

the best choosing in this situation will be the Legged-robot. The

controller of the Legged-robot will be simpler by using a designed

sequence of footholds (Fig. 1).

a. Straight gait b. Standstill-turning gait

y*

x

A1 A2

A3 A4

A*3

A*1

A*4

A*2

c

c*

y

x*

A*2

A*1

A*3

A*4

A1 A2

A3 A4

x

x*

c

c*

y*
y

Fig. 1. Describing the straight-going and standstill-turning gait of

the Legged-robot.

The sequences are using as position set-points of the robot

controller (Hirose et al., 2002; Hirose, 2001). In this case, the

locomotion of the Legged-robot is only defined by two types of

the moving. The first moving is called the straight-going gait and

the other is called the standstill-turning gait (Chen et al., 2002;

Izumi et al, 2001; Hirose, 1984). In the straight-going gait, the

robot’s direction is along the y-axis in the frame ∑c (the ∑c

represents a frame which is attached with the robot’s body) (Fig.

1a). In the standstill-turning gait, the robot will turn angle ϕ

around the center of the robot’s body, however, the position of the

robot along y-axis which is not changed during the turning cycle

time (Fig. 1b). The robot’s center after finished a straight-going

and standstill-turning gait which are denote by c*.

If the position of the standstill-turning points is known then the

robot is able to walk to anywhere by using straight-going and

standstill-turning gaits sequence. In Fig. 2, it is shown an example

of a method to go to a goal by using straight-going and

standstill-turning gaits sequence.

Starting point

Turning points

Goal

The trajectory

 Fig. 2. The changing gait of legged robot.

Therefore, an algorithm has to develop to find these turning

points for the robot. This issue have been mentioned in many

researches (Chen et al., 2000; Pan and Cheng, 1991). Unfortunately,

the researchers have not mentioned that how to minimize the

robot’s moving distance. In this paper, we proposed a new method

to find the shortest way and avoid obstacles on the terrain by

using Dijkstra’s algorithm. In the robot’s journey, it will meet not

only small obstacles but also large obstacles.

For small obstacles, the robot can easily step over. Obviously,

for large obstacles, the robot can’t walk over the obstacles because

the height of obstacles may be higher than the height of robot’s

footstep. In this situation, it is assumed that the obstacles on the

terrain which are enough height to the robot can’t step over or

cross over, therefore, the best choice of the robot is walking

around the obstacles. The Dijkstra's algorithm and turning point

finding method are presented at Section 3. There are seven section

in our research paper contain. Section 1 is introduction. Section 2

is the mechanical structure of quadruped robot TITAN-VIII.

Section 4 discusses a way to obtain the generation of quadruped

robot gait. Section 5 is simple flow chart of the control algorithm.

The experimental results are shown in Section 6. Finally, Section 7

shows some of the conclusions drawn from this research.

Van Tien-Nguyen Byong-Won Ahn Cherl-O Bae

2. Mechanical structure of TITAN-VIII

This paper is focused on TITAN-VIII that is a kind of the

Legged-robot. A photo of quadruped walking robot TITAN-VIII is

shown in Fig. 3. The major specification of TITAN-VIII in

standard walking posture and is 0.3 [m/s] (craw gait) and 0.9 [m/s]

(trot gait). The payload is 5~7 [kg]. Its leg length is 400mm and

weight is 40kg. It is fed from battery or AC-DC power supply.

Fig. 3. The TITAN-VIII photo.

It is used to for general application purpose. The mechanism of

the TITAN-VIII is a standard mechanism that composed of rotating

joints. The robot’s body is made of aluminum rectangular plate

which is attached with four legs by rotating joints. These legs are

driven by three actuators for each leg. The actuator consists of a

DC motor and a motor driver. This will result in 12 actuators for

4 legs that make a more complex of the robot’s construction, but it

is making an ability to climb over a plane’s slope.

The Fig. 4 is showed a block diagram of TITAN-VIII. It is

included a Titech Robot Driver, a 16 channel D/A converter, a 16

channel A/D converter and a ARM Cortex-M3 microcontroller as a

main controller. The desired joint angle of four legs can be

automatically computed by main controller, after that it is

transformed to the physical value by the D/A converter and sent

to the motor driver. The real angles are on-line measured by

means of the potentiometer to be sure that the joint angles reach to

desired angles. The specifications of motor driver are U = 30 [V],

Imax = 8 [A], Ucontrol = ±10 [V].

DC Motor Potentiometer

Feed back

Motor
driver

9.5V

16 ch A/D

9.5V

M

Titech Robot Driver

ARM
Cortex-M3

16 ch D/A

Fig. 4. Block diagram for one actual joint.

The schematic drawing of TITAN-VIII is presented in Fig. 5. In

this figure, a, b, d and e are called the length of four link of four

legs, respectively. The leg’s mechanisms are composed of a

link-wire plane mechanism, a rotating mechanism and a round

plate as its foothold.

leg 1 leg 2

leg 4leg 3

B1 B2

B3 B4

2m

2n

zc

xc

yc

c

ed

b

a

zo

xo

yo

o

A4

A2A1

A3 p A4
o

p B4
o

p c
o p A4

c

p B4
c

Fig. 5. Mechanical structure of TITAN-VIII.

In Fig. 5, the frame ∑c is denoted as a fixed frame at the

robot’s Center of Gravity (CoG) and another fixed frame is

attached with the ground, is named ∑o. It is used to describe the

robot’s motion in the global frame. In the c∑ , the position vector

of Ai and Bi are determined by

 and

 for i = 1, 2, 3 and 4, respectively. In

addition, the correlation between c∑ and o∑ is expressed by vector

 . Ai and Bi in o∑ are given by:

 (1)

 (2)

Where: T is the orientation matrix of c∑ with respect to o∑

Optimizing Path Finding based on Dijkstra’s Algorithm for a Quadruped Walking Robot TITAN-VIII

cos sin

sin cos

(3)

ϕ is a turning angle around center c, ϕ = 0 means that there is

no changing direction.

3. Dijkstra’s algorithm

In most situations, the walking time of the robot to a desired

point (a goal point) must be the shortest time for increasing of the

robot’s working efficiency. Therefore, the robot controller has to

find the shortest way to the goal and avoid obstacles which

appear on the terrain. There are a lot of methods to find the

shortest way such as Dijkstra's algorithm, Bellman Ford algorithm, –

Floyd Warshall algorithm and Johnson's algorithm. The Dijkstra's –

algorithm was selected in this research because its operations are

less complex than the others. It is very important in real-time

control system of autonomous robot. In our experiment, we use a

controller which is made by ourselves. Our robot controller has an

ARM®Cortex®-M3 microcontroller and an AVR microcontroller

without using a personal computer like the original robot

controller. By using an independent controller, the robot can freely

walk on working area without restricted by the connecting wires

between the robot and the computer. In our controller,

ARM®Cortex®-M3 has a higher processing performance than AVR

microcontroller’s, therefore, the path-finding algorithm is performed

by ARM®Cortex®-M3 microcontroller and AVR for controlling

peripheral devices such as actual motor drivers and sensors,

respectively.

Dijkstra’s algorithm is an algorithm for finding the shortest

paths between nodes in a graph (Dijkstra, 1959) The algorithm was

commonly used for two purposes. The first, it can be able to find

the shortest path between a starting node and another node in a

graph. The second, it can also be used for finding the shortest

paths from a starting node to all other nodes. In the second

purpose, for example, if the nodes are the cities and length

between the pair of nodes represent driving distances then

Dijkstra's algorithm can be used to find the shortest route way

between one city and all other cities. Most situations, the robot

only walks from a starting point to goal point, so the first method

is a more accordant choice. Dijkstra’s algorithm is discussed more

detail at the following part.

The algorithm uses a graph as shown in Fig. 6a. The starting

and goal point is called “s” and “d”, respectively. In the graph, it

is existed some the pair of vertexes which are called inter-vertexes,

they have the ability to connect with other ones. The rest of ones

do not have any this ability, they are seen as their distances

between them are infinity.

Dijkstra’s algorithm finds the shortest path between “s” and “d”

in a graph as Fig. 6a. There are six vertexes in this graph

numbering from 1 to 6. The distance is 15, 8 and 5 units from “s”

to 2, 3 and 4, respectively. Vector V are defined to mount marked

vertexes as “a bag” to contain intermediate vertexes in the

operation of algorithm. The starting point is added into V like first

element at the initialization stage. And now, the algorithm is

starting at vertex 1 with only one element in V, V={1} and vertex

1 is called the current vertex. We can see that the pairs of 1-2,

1-3 and 1-4 are inter-vertexes and the shortest corresponding

distance path between “s” and vertex 4 is 5 units. Therefore,

vertex 4 will be marked a label as a current vertex and will be

also added to vector V, then vector V has one more element and

is expressed by V={1, 4}. So, vertex 4 is not connected to vertex

2 and vertex 5, the distance from vertex 4 to them is infinity.

Obviously, the vertex 4 is connected to vertex 3 and vertex 6 but

vertex 3 is selected as a candidate for adding V because the

distance from vertex 3 to vertex 1 through current vertex 4 that is

shorter than the distance from vertex 6 to vertex 1 through vertex

4, we have V={1, 4, 3}. The general formula for finding the

length from a vertex to s that is presented as following.

 min (4)

Where Lk(s, v) is a length from vertex v to starting vertex s at

the cycle k and Lk-1(s, v) is the length at before cycle of cycle kth.

Lk(s, u) is the length from current vertex u to s and w(u, v) is the

length between vertex u and v. If there is more than one vertex

with current vertex to make a pair of inter-vertexes then the vertex

with the smallest Lk which will be selected as current vertex at

next cycle. Additionally, we have to note that we don’t need to

consider vertexes which have been in V. In the Fig. 6, the current

vertex is marked by symbol *.

And then, vertex 2 is chosen as a candidate for current vertex

because the distance from vertex 2 to vertex s is equal to 10 units

(from 2 to “s” through 3) and the distance is shorter than the

distance from vertex 6 to vertex s. At this moment, V is added an

element, V= {1, 4, 3, 2}. Because it is easy to see that the vertex

2 is only connected to vertex 5 , it becomes a next current vertex,

V={1, 4, 3, 2, 5}.

Van Tien-Nguyen Byong-Won Ahn Cherl-O Bae

1 4

3

2 5

615

8
5

6
3

19

17"s"

"d"

4

2

1 4

3

2 5

615

8
5

6
3

19

17

"s"

"d"

4

2

1 4

3

2 5

615

8
5

6
3

19

17"s"

"d"

4

2

1 4

3

2 5

615

8
5

6
3

19

17"s"

"d"

4

2

1 4

3

2 5

615

8
5

3

19

17
"s"

"d"

4

2

1 4

3

2 5

615

8
5

6
3

19

17"s"

"d"

4

2

(a) (b)

(c) (d)

(e) (f)

*

*

*

* *
*

* *

6

*

*

*

*

*

*

*

Fig. 6. Describing the graph of Dijkstra’s algorithm.

In addition, vertex 5 is connected to the goal vertex as a unique

connection. The algorithm will be stopped when the goal vertex is

appeared in V vector. After all, we have V= {1, 4, 3, 2, 5, 6}. By

finding vector V and saving the vertex tracings of current vertexes,

the vertex are as turning-points of the robot which are obtained.

Finally, we obtain the desired the robot path by connecting all the

selected turning-points successively. The designed path is drawn in

a solid line (Fig. 6f) which is generated from the starting point to

the goal point. The algorithm is also used to determine a suitable

path of the robot in an environment with many obstacles.

In Fig. 7, it is showing an example of the robot journey to

destination. We figure out that the robot working environment is a

plan with a gird. The meshes are made by vertical and horizontal

lines with the same length between them. The lengths are a fixed

value and are determined by an experimental equation. If the

lengths are too small, the robot will not have enough space to

perform self-standstill-turning gait. In addition, the robot path will

be longer, if the lengths are more than the necessary value. The

suitable length can be expressed by following experimental

equation:

 ∆max (5)

Where, 2n is the length of robot body. Smax is the longest

footstep of the robot in a gait cycle and is length of meshes.∆

The purpose of making the gird is a technique to find suitable

turning-points along the moving direction from the starting-point to

the goal-point.

Goal

c1 c2 c3 c4 c5 c6 c7 c8

r1

r2

r3

r4

Fig. 7. The suitable path of the robot in an environment.

The crossing points between horizontal lines and vertical lines

of the grid will be chosen as candidates for turning-point. At the

crossing points, there are three ways to go to a next point that is

along vertical, horizontal line and diagonal line as shown in Fig. 8.

We assume that the robot is being vertex 1, while the robot is

able to select one of three directions. From current turning-point to

vertex 2 denotes the direction vector from 1 to the goal, therefore,

the vertex 2 is the next current position.

1 2

Safety
distance

Obstacle

3

5 6 7 8

4

Combined
obstacles

r1

r2
c1 c2 c3 c4

Fig. 8. Finding path to avoid the obstacles on terrain.

At the vertex 2, the diagonal line from 2 to 6 and 7 is

prevented by an obstacle, therefore, the robot can only go straight

to 3 along solid line. Obviously, when the robot is on 3, the

diagonal line from 3 to 8 is selected such a unique line because

others lines are inhibited by some obstacles on the environment. A

boundary with the safety distance is imagined surrounding

obstacles. The boundary will separate the working space of robot

into two parts that are the forbidden and allowed zone. If an

obstacle is too near others, the robot won’t make a though way

between them. In this situation, these obstacles are considered to

be only one obstacle; they are called the combined obstacle. A

specified line is generated surrounding the combined obstacles to

make a region that prevent approaching robot to be nearer.

The obstacles on terrain will be detected by the robot’s sensors

such as the camera, proximity sensors and ultrasonic sensors. The

Optimizing Path Finding based on Dijkstra’s Algorithm for a Quadruped Walking Robot TITAN-VIII

sizes of obstacles are measured by processing the acquired images

from a camera to create a terrain map with fully obstacles.

4. Generation of the quadruped robot gait

In the middle of walking or running, a quadruped robot has to

have balanced in order to avoid falling or unwanted body motion.

Therefore, the controller has to generate a fit gait with the robot

motion. There are many methods to generate a gait of Legged-robot

as discussing in (Chen et al., 2001; Hirose et al., 2002). The

purpose is to keep the projection of CoG onto horizontal plane

within the supporting polygon which is created by supporting legs

of the robot. In other words, the robot is being in the statically

stable (Chen et al., 2001).

In the statically stable gait, the robot is able to remain stable as

long as the CoG within the support area. It is shown an example

of the quadruped robot in others status (Fig. 9). The black solid

rounds are representing the robot foothold contacting ground which

role such supporting legs on a working cycle of the robot and the

white rounds are lifting-legs. In left part of Fig. 9, three legs

provided a support area and the horizontal projection of CoG is

located into the support area, therefore, the robot is in the

statically stable and vice versa.

CoG

Statically stable Statically unstable Stability margin
(a) (b) (c)

Fig. 9. Describing CoG and support polygon.

The shortest distance from CoG to the different edges of the

support polygon is stability margin (Fig. 9). The stability margin

provides some indication of the ability to resist disturbances while

it is in the walking statically stable. The higher stability margin of

the robot is the better because this is demonstrate that the robot is

not easy to fall down when the robot is working at varied terrain.

We will define a sequence of the legs of the quadruped robot to

keep CoG onto the support area at any time, is shown in (Fig. 10).

y

x'

1 2

3 4

A1

S

S/4

x

A2

A3 A4

A*3

S/2

x

A1 A2

A3 A4

A*3

A*1

3S/4

y

x

A1 A2

A3

A*3

A*1

A*4

c

S

x

y

A1 A2

A3 A4

A*3

A*1

A*4

A*2

c

A4

y'

c
c

o o

o o

x'

x' x'

y' y'

3 4

3 4 3 4

1 2

1 2
1 2

S

S

S

(a) (b)

(c) (d)

L0

n

n

m m

Fig. 10. The sequence of legs in straight-going gait.

For keeping CoG on to support polygon, three legs has to

support its body at any time and one leg left that will play a role

as the swing leg (lifting up). In a moving cycle, the support leg

does a successive performance swing-ahead, although it does not

lift up. With respect to the swing leg, it performs a sequence of

the moving including three types of the moving that are lift-up

moving, swing-ahead moving and put-down moving in a cycle. The

robot repeats the sequences of the moving at the other cycles. The

generation of quadruped robot gait to form the sequence of swing

leg and support leg which is selected in such a way that keeping

the vertical projection of CoG onto horizontal plane within the

support area.

We define o∑ and c ∑ like above. The quadruped robot is being

in initial posture with the stride of legs and the height of the CoG

that are denoted L0 and H0, respectively. Thus, the position vectors

of four footholds in c are given by:∑

 (6)

 (7)

 (8)

 (9)

Van Tien-Nguyen Byong-Won Ahn Cherl-O Bae

And, the relation between o∑ and c ∑ can be expressed by:

 (10)

Where, hi (i= 1, 2, 3 and 4) is height of the ith foothold.

Normally, the value of hi is equal to zero but there is an exception

that is when the robot climbs up and down on the stair. The

height of the body is denoted by ozc. The robot body plate is

always parallel with vertical plate and locates at a higher position

than the ground; therefore, ozc is not equal to zero.

When the robot begins to crawl forward, the third leg A3 will

be lifted up firstly after that it swings ahead a distance S (S is

shorter than Smax) and put down at last of its duty, and finishes

first step of a sequence of steps. The new position of A3 is

denoted by A*
3. The foothold of other legs is still at the same

position during this phase. It’s clearly that the CoG is always

settled in a supporting polygon which is made by A1, A2 and A4.

Obviously, the new position of the A3 with respect to c can be ∑

determined by following equations:

The robot body is moved ahead a quarter of S after the first

phase. The posture of the robot is varied as shown Fig. 9a. The

position vector of CoG becomes:

Similar to first selected swing leg, the others should be the next

swing leg after the third leg. It is obvious that the robot body will

be moved ahead a distance of S after completely four steps. The

sequence of swing leg can be determined as 3 1 4 2 or 4 2→ → → →

3 1. → →

The sequence of legs in standstill-turning gait is presented as

Fig. 11.

We assume that the turning angle is . If the robot performs a ∅

left turning then the turning angle will be > 0; otherwise, ∅ ∅

< 0. Similar to the straight-going gait, the initial posture of the ∅

robot in standstill-turning gait is presented by solid line as shown

in Fig. 11a. The A4 leg can be selected as the first swing leg as

shown in Fig. 11b. The A2 leg should be the next swing leg. After

A2 and A4 legs, the A1 leg should be selected as the swing leg.

Finally, the A3 leg performs a footstep to position A*
3, then the

robot is returned to the initial posture. Therefore, the sequence of

swing leg for left turning is 4 2 1 3; otherwise, the sequence → → →

is 3 1 2 4 for right standstill-turning gait about the robot → → →

center c. The foothold vector can be determined the same way

with straight-going gait.

TITAN-VIII has four legs and three activating joints in each leg

(Fig. 12), where θi1, θi2 and θi3 are joint angles. Based on the

generated desired gaits above, the position of footholds can be

known at any time of a moving cycle. Now, the key for

implementation of the desired moving is how to know angle joints

of the robot. If we can know them, we can completely control the

robot to follow a desired trajectory. It’s easy to know that the

value of θi1, θi2 and θi3 will be determined in relation of the height

of the robot body Hi and the stride Li, as shown in Fig. 12. When

the robot moves, the formulations for determination of value of θi

are generalized based on an equivalent leg mechanism of

TITAN-VIII.

i3

i2
i1

Ai

Bi

a

b
e

Hi

Li

d

z

x

y

c

Fig. 12. Mechanism of TITAN-VIII leg.

y

x

1 2

3 4

A1 A2

A3 A4

c o

y'

x'
1

2

3
4

c o

A3

y

x

A4

A*4

A*2

A*1

A*3

A1

A2

(a) (b)

Fig. 11. The sequence of legs in standstill-turning gait.

Optimizing Path Finding based on Dijkstra’s Algorithm for a Quadruped Walking Robot TITAN-VIII

Thus, we obtain equation:

 (11)

The other side, we can obtain the height of legs and stride from

the position of foothold Ai and Bi in ∑c. We suppose that the

shape of leg is constant from start to end of a moving cycle, and

then we obtain:

 (12)

Where:

 and

 , for

i = 1, 2, 3 and 4, respectively. Moreover, the revolute joint of Bi

is able to rotate around z axis, we have:

 tan

 (13)

Therefore, we finally obtain (14) from (11), (12) and (13):

tan

(14)

We denote some constants as follows:

Solving equation (14), we can obtain the joint positions θi1, θi2

and θi3 as shown in equation (15).

 (15)

Because of the limit of the robot’s mechanism and the

roughness of the ground profile. When the robot reach the

maximum stretch of four legs, it takes a maximum stride. The

maximum stretch, denoted by Amax, is defined by equation (16)

(Chen et al., 2001).

 max ∆∆

Where ∆ denote the roughness of the ground profile, H0 is

the height of the robot center-of-gravity in the initial posture. The

leg stretch of the quadruped robot should satisfy:

≤max

Equation (17) is boundary condition to solve equation (15).

The maximum stride and the maximum turning angle are

denoted by Smax and ∅max, respectively. The maximum stride is the

longest footstep in a gait cycle. ∅max is a maximum turning angle

of the robot’s joints in a gait cycle when the robot takes a left

turning or right turning. T, are mentioned (Chen et al., 2001).

5. The control algorithm

The flow chart of control algorithm is shown in Fig. 13. The

parameters at initial posture, a robot staring point and a goal point

are given as initial inputs for the algorithm. The ground profile of

the terrain is determined by the sensor system and the vision

system. The collected data from the system is used to create a grid

map that consists of the information of obstacles. The grid map

play a role Dijkstra’s algorithm input data. Based on the

information, the shortest trajectory to the goal point will be

completely established by Dijkstra’s algorithm. The robot position

vector is known from the trajectory after that the joint angles are

determined from equation (15). Finally, the quadruped robot is

actuated though ROBOT DRIVER to DC motor. If the robot

doesn’t reach the goal point in a moving cycle then the control

system will repeat the sequence of leg until the robot is on the

goal.

Van Tien-Nguyen Byong-Won Ahn Cherl-O Bae

Initial parameters

BEGIN

Input goal point

Determined obstacles
on the terrain

Dijkstra's algorithm

Sequence of legs

Cacualate qi1, qi2 qi3

(i=1,...,4)

Generate the foot
trajectories

ROBOT DRIVER

Does it reach
the goal ?

No

END

Yes

Fig. 13. The flow chart of control algorithm.

6. Experimental result

The robot in our experiment which is named TITAN-VIII, the

size of robot body and robot legs are as follows [mm] m = 101, n

= 201, a = 43, b = 200, d = 155 and e = 45. The initial posture

is given by the position of legs with θi1 = 0, θi2 = 0 and θi3 =

900, so that the length of legs and the height of body at the robot

initial status are L0= 200 mm and H0= 243 mm, respectively. The

largest stride and maximum turning angle in a gait cycle are Smax =

226 mm and ∅max = ± 440, (Hirose et al., 1984), respectively. If

the desired turning angle is a larger turning angle than the robot

maximum turning angle, the robot has to implement the stand

still-turning gait for several times to reach the desired angle. The

experimental results were conducted on a computer and there is

simulation software installed on it. There are a lot of robot

simulation software such as Matlab & Simulink, Gazebo, Webots

and RoboDK. In our experiment, Matlab & Simulink was selected.

The coordinates of a starting point and a goal point were given by

user. A coordinate grid map was established on terrain and the

robot was in a node of the grid. There is an obstacle on the terrain

which the robot could step over; the robot had to find the shortest

path to go to the goal. The simulation environment for the robot is

presented in Fig. 14.

Fig. 14. TITAN-VIII simulation on Matlab & Simulink.

The bold line was the robot trajectory which was automatically

created by using Dijkstra’s algorithm. An obstacle was putted on

the simulation environment that was indicated by the gray polygon

(Fig. During the walking process on simulation environment, the

robot avoided the obstacle by going around the obstacle because

we assume that the robot can step over the obstacle. The left

bottom corner is the starting point and right top corner is the goal

point.

 The change of variable joint θi1, θi2 and θi3 in a straight-going

gait cycle were shown in Fig. 15.

Fig. 15. The variable joints on a cycle.

Optimizing Path Finding based on Dijkstra’s Algorithm for a Quadruped Walking Robot TITAN-VIII

A gait cycle is every 5s. At the time t = 0 ÷ 1s, when the

robot was being in initial status, the variable joints were equal to

initial value.

At time t = 1 ÷ 2s, the robot moved its leg 1st backward in the

direction of the motion, when θ11 was increased at the first period

and reached a stable angle at the end of period (Fig. 15a). It is

easy to see that θ13 also was changed because the length of leg 1st

was already increased a distance at this time.

At time t = 2 ÷ 3s, the leg 1st was as the swing leg, it was

lifted from ground and was swung ahead. According to the

sequence of steps in Fig. 10, the θ11 and θ21 were increased

continuously to keep the leg’s foothold 1st at the ground all the

time t =3 ÷ 4s and t = 4 ÷ 5s and were came back the initial

angle at the end of cycle (Fig. 15b, c).

The change of the length of four legs in a moving cycle was

shown in Fig. 16. The lengths of legs were changed between the

initial status is L0 = 200 mm and 215.7 mm.

Fig. 16. The changing the length of four legs in straight-going gait.

Because the robot crawled without changing the height of CoG,

the difference between Hi at first and last cycle is equal to zero.

The height of four legs was presented in Fig. 17. At the turning

point the robot will change its gait from the straight-going to the

standstill-turning gait. The changing length of legs in this process

were shown in Fig. 18. It is clearly that the robot turning angle is

either ± 450 or ± 900, on the other hand, the maximum turning

angle of the robot is ∅max= ± 440. The turning gait will be done

two times when desired turning angle was ∅ = ± 45 and will be

need four times when desired turning angle is ∅ = ± 90. After the

standstill-turning, the robot walked toward in a new moving

direction. The robot will repeat the sequence of moving until it

reaches the goal.

Fig. 17. The changing height of four legs in a cycle.

 Fig. 18. The changing the length of four legs of the

standstill-turning gait in a cycle = ∅ 450.

7. Discussion

This paper has presented a method of generating a

straight-going gait and a standstill-turning gait for a quadruped

robot TITAN-VIII. The formulations of evaluating position of

foothold in fixed frame have been mentioned in this paper to

determine the joint positions in moving cycle of the robot. In

Van Tien-Nguyen Byong-Won Ahn Cherl-O Bae

addition, the path finding algorithm has also been developed to

avoid obstacles on the robot terrain. The obstacles avoidance

algorithms based on Dijkstra’s algorithm choose the suitable path

to a goal. The proposed Dijkstra’s algorithm is characterized by

just finding the turning-point rather than the making a curve

trajectory that reduces the calculation processing. It means that

there is a fewer calculations processing than others, therefore, the

sampling time is able to choose a small value to help increasing

the robot speed.

The experimental results verified the reliability and effectiveness

of the proposed method. It's proven by two things. First, the robot

can perform a smooth transition from one gait cycle to a other

one, because the robot returns to the initial posture after each gait

cycle whenever it is in a straight gait or turning gait. Next, a

possible large stride of the robot can be taken in very gait cycle

by considering various factors in the robot status such as

mechanism constraints, uneven terrain.

It should be also first research that the proposed method can be

applied to general crawling with different duty factors. Moreover,

the proposed method can be work in real world condition.

References

 [1] Chen, X., K. Watanabe and K. Izumi(2000), Kinematic

Solution of a Quadruped Walking Robot Posture Analysis of

TITAN-VIII, Process of 14th IFAC World Congress, Vol. B,

pp. 343-348.

 [2] Chen, X., K. Watanabe, K. Kiguchi and K. Izumi(2001),

Implementation of omnidirectional crawl for a quadruped

robot, Advanced Robotics, Vol. 15, No. 2, pp. 169-190.

 [3] Chen, X., K. Watanabe, K. Kiguchi and K. Izumi(2002),

Path Tracking Based on Closed-Loop Control for a

Quadruped Robot in a Cluttered Environment, Transactions of

ASME, Vol. 24, pp. 272-280.

 [4] Dijkstra, E. W.(1959), A note on two problems in connection

with graphs, Numerische Mathematik, Vol. 1, No. 1, pp.

269-271.

 [5] Hirose, S.(1984), A Study of Design and Control of a

Quadruped Walking, Int. J. Robot. Res., Vol. 3, No. 2, pp.

113-133.

 [6] Hirose, S., Y. Fukuda and H. Kikuchi(2002), The gait control

system of quadruped walking vehicle, J. Robotics Soc,

http://www.tandfonline.com/doi/abs/10.1163/156855386X00193.

 [7] Izumi, K., K. Watanabe and R. Sato(2001), Behavior selection

based navigation and obstacle avoidance approaching visual

and ultrasonic sensory information for Quadruped robots,

Advanced robotic systems, http://journals.sagepub.com/doi/full

/10.5772/6234.

 [8] Pan, J. and J. Cheng(1991), Study on quadruped walking

robot climbing and walking down slope, Proc. IEEE / RSJ Int.

Workshop on Intelligent Robots and Systems, Osaka, Japan,

pp. 1531-1534.

 Received : 2017. 05. 29.

 Revised : 2017. 07. 13.

 Accepted : 2017. 08. 28.

