DOI QR코드

DOI QR Code

축광노면표시 시인성 개선에 따른 경제성 분석 및 적용방안

Effectiveness Analysis and Application of Phosphorescent Pavement Markings for Improving Visibility

  • 이용주 (아주대학교 TOD기반 지속가능 도시.교통 연구센터) ;
  • 이규진 (아주대학교 TOD기반 지속가능 도시.교통 연구센터) ;
  • 김상태 ((주)평화엔지니어링 기술연구원) ;
  • 최기주 (아주대학교 교통시스템공학과)
  • 투고 : 2017.06.21
  • 심사 : 2017.07.25
  • 발행 : 2017.10.01

초록

야간 혹은 우천시에 노면표시의 시인성이 저하되어 교통안전에 위협을 초래하고 있는 가운데, 본 연구에서는 최근 소개된 차선도색 장비 성능개량에 따른 노면표시 수명 연장(1.5배), 생산성 향상(56.3%), 축광차선도료를 배합한 야광 노면표시의 시인성 개선(97.0%) 등 다양한 기대 편익과 종합적인 소요비용을 고려한 경제적 타당성을 제시하고자 하였다. 노면표시 시인성 개선에 따라 45.4%의 사고가 감소, 연간 2,463억원의 교통사고 절감편익이 발생하며, 재도색주기 증가에 따른 공사중 교통혼잡비용 절감 연간 123억원, 자율주행자동차 차선인식 성능 개선에 따른 장비 가격 절감으로 연간 453억원의 편익이 발생하여, 축광노면표시 도입에 따른 연간 총 편익은 3,039억원으로 산정되었다. 전국 도로 91,195km의 차로구분선, 중앙선 및 가장자리차선에 야광차선 도입시 총비용 증가분은 연간 1조 9,222억원으로 경제성(비용-편익비 0.16) 확보가 어려운 것으로 나타났다. 교통사고 잦은 곳의 지방부 분석 구간길이(400m)에 대한 도로유형별 차로수별 차선도색비용과 교통사고비용 원단위를 적용하여 축광 노면표시의 경제적 타당성이 확보되는 사고 규모를 산정한 결과, 노면표시가 직 간접적 원인인 사고로 유발된 사망자가 연간 1명 이상이거나, 부상자가 연간 2명 이상(단, 왕복 4차로 미만인 경우는 연간 1명 이상)인 경우 경제적 타당성이 확보되는 것으로 나타났다. 구체적으로, 관련 사고구간(5,697개)에 대한 야광 노면표시 설치비용을 사고감소편익과 비교한 결과, 충분한 경제성(비용-편익비 3.91)이 확보되었다. 연구의 한계와 향후 연구주제가 논문의 말미에 토의되었다.

Visibility of lane marking is impaired at night or in the rain, which thereby threatens traffic safety. Recently, various studies and technologies have been developed to improve lane marking visibility, such as the extension of lane marking life expectancy (up to 1.5 times), improvement of lane marking equipment productivity, improvement of lane marking visibility by applying phosphorescent material mixed paint. Cost-benefit analysis was performed with considering various benefit items that can be expected. About 45% of traffic accidents would be prevented by improving lane marking visibility. Additionally, accident reduction benefit and traffic congestion reduction benefit were calculated as much as 246 billion KRW per year and 12 billion KRW per year, respectively, by reducing repaint cycle due to enhanced durability. 45 billion KRW per year is expected to reduced with improved lane detection performance of autonomous vehicle. Meanwhile, total increased cost when introducing phosphorescent material mixed paint to 91,195km of nationwide road is identified as 1922 billion KRW per year. However, economic feasibility could not be secured with 0.16 of cost-benefit ratio when applied to the road network as a whole. In case of "Accident Hot Spot" analyzing section window (400m), one or more fatality or two or more injured (one or more injured in case of less than 2 lanes per direction) per year were caused by pavement marking related accident, economic feasibility was secured. In detail, 3.91 of cost-benefit ratio is estimated with comparison of the installation cost for 5,697 of accident hot spot and accident reduction benefit. Some limitations and future research agenda have also been discussed.

키워드

참고문헌

  1. Campbell, J., Richard, C., Brown, J., Graham, J., Lichty, M. and O'Laughlin, M. (2012). Human factors guidelines for road systems. National Cooperative Highway Research Program Report 600C, Transportation Research Board.
  2. Carlson, P., Park, E. and Andersen, C. (2009). "Benefits of pavement markings: A renewed perspective based on recent and ongoing research." Transportation Research Record: Journal of the Transportation Research Board, 2107, pp. 59-68. https://doi.org/10.3141/2107-06
  3. Chung, Y., Kim, J., Cho, H. and Shim, J. (2009). Methodology for the estimation of non-recurrent traffic congestion costs. The Korea Transport Institute Research Report No. 2009-29 (in Korean).
  4. Davies, C. (2016). "Pavement markings guiding autonomous vehicles - A real world study." Proc. of Automated Vehicles Symp. 2016, San Francisco, U.S.
  5. Donnell E., Karwa V. and Sathyanarayanan S. (2009). "Analysis of effects of pavement marking retroreflectivity on traffic crash frequency on highways in North Carolina." Transportation Research Record: Journal of the Transportation Research Board, 2103, pp. 50-60.
  6. KNPA(Korean National Police Agency) (2012), Traffic Pavement Marking Install & Management Manual (in Korean).
  7. Korea Road Traffic Authority (2016), Traffic Accidents Hot Spots Improvement Master Plan and Effectiveness Analysis of Year 2016 (in Korean).
  8. Korea Road Traffic Authority Traffic Science Institute (2012). Study on Pavement Marking Reflective Performance Standards (in Korean).
  9. Lee, M., Choi, K., Oh, I. and Kim, J. (2015). "Analysis of traffic accident reduction performance of high-quality and long-life pavement marking materials." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 4, pp. 921-929 (in Korean). https://doi.org/10.12652/Ksce.2015.35.4.0921
  10. McKinsey & Company (2016). Automotive Revolution - Perspective Towards 2030.
  11. MOLIT (Ministry of Land, Infrastructure and Transport) (2016). Yearbook of Road Statistics 2016 (in Korean).
  12. MUTCD (2003). http://mutcd.fhwa.dot.gov (Re-quoted from Chung et al. (2009))
  13. Sage, A. (2016). Where's the lane? Self-driving cars confused by shabby U.S. roadways. Available at: http://www.reuters.com/article/us-autos-autonomous-infrastructure-insig-idUSKCN0WX131 (Accessed: June 6, 2017).
  14. Road Traffic Authority (2009), Research on Lane visibility Improvement for Reducing Traffic Accidents (in Korean).
  15. Rumar, K. and Marsh, D. (1998). Lane markings in night driving: A review of past research and of the present situation. University of Michigan Transportation Research Institute Technical Report, Report No. UMTRI-98-50.
  16. Vacek, S., Schimmel, C. and Dillmann, R. (2007). "Road-marking analysis for autonomous vehicle guidance." Proc. of 3rd European Conference on Mobile Robots. Freiburg, Germany, pp.1-6.
  17. Yi, Y., Lee, M. and Choi, K. (2016). "Effectiveness analysis of phosphorescent pavement markings for improving visibility and design standards: Focusing on expressway accident hot spots." Journal of the Korean Society of Civil Engineers, Vol. 36, No. 4, pp. 685-694 (in Korean). https://doi.org/10.12652/Ksce.2016.36.4.0685