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Abstract 
This data mining technique was used to extract useful information from percutaneous coronary 

intervention data obtained from the US public data homepage. The experiment was performed by extracting 
data on the area, frequency of operation, and the number of deaths. It led us to finding of meaningful 
correlations, patterns, and trends using various algorithms, pattern techniques, and statistical techniques. In 
this paper, information is obtained through efficient decision tree and cluster analysis in predicting the 
incidence of percutaneous coronary intervention and mortality. In the cluster analysis, EM algorithm was 
used to evaluate the suitability of the algorithm for each situation based on performance tests and 
verification of results. In the cluster analysis, the experimental data were classified using the EM algorithm, 
and we evaluated which models are more effective in comparing functions. Using data mining technique, it 
was identified which areas had effective treatment techniques and which areas were vulnerable, and we can 
predict the frequency and mortality of percutaneous coronary intervention for heart disease.  
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1. Introduction 
 

With the advancement of computer science, the emergence of the Internet and the web, and the 
development of mobile computing, such as symptoms, tests, and prescriptions and treatments done on 
patients, is being automatically recorded in real time without manual intervention. For example, every time a 
diabetic patient measures his blood glucose level with his tester, the record is sent wirelessly to the hospital, 
and if it is determined that the patient is at risk, the patient may be asked to come to the hospital. 
Furthermore, due to the development of bioinformatics, which has attracted a great deal of attention in recent 
years, it has become possible to collect, analyze and mining human genetic information together with patient 
data.  

In this paper, we analyzed the relationship between the frequency of percutaneous coronary intervention 
for patients with heart disease and the mortality resulted from that operation in New York area using this 
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data mining technique. Cluster analysis were applied to enhance the accuracy of predicted values. EM 
algorithms used in cluster analysis, were compared and evaluated. 

 
  
2. Related research 

 
2.1 Clustering Algorithm 
Cluster analysis is a process of grouping data into a class called a cluster so that objects in the same family 

have a high similarity to each other and have a high degree of similarity with objects of other clusters. 
Differentiability is assigned a value based on attribute values representing objects, usually distance measures 
are used. These cluster analysis is widely used in data mining, statistics, biology, and machine learning fields, 
and a wide variety of cluster algorithms have been proposed. The criteria for selecting the clustering 
algorithm depends on the data used and the purpose of the application. When learning clusters, the output is 
in the form of a diagram showing how instances belong to the cluster. The simplest case involves associating 
each instance with the number of clusters. The simplest case involves, for example, associating each instance 
with the number of clusters. In the simplest case, it involves associating each instance with the number of 
clusters. This is to place the instances in a two-dimensional space and visually divide each cluster into spaces. 
Some clustering algorithms allow one instance to belong to clusters, so the diagram is drawn by 
superimposing subsets representing each cluster, placing instances in two-dimensional space. Some 
algorithms associate instances with clusters stochastically rather than categorically. In this case, there is one 
probability or instance of membership in each instance that belongs to each cluster. 
This special association is intended to be a probabilistic result, so the sum of the probability values for each 
example is 1. Other algorithms can be used to create clusters with a hierarchical structure so that the instance 
space from the top-level clusters can be divided into only a few clusters, each clustering pointing to its own 
subcluster each time it goes down. In this case, the elements combined at the lower level are clustered more 
closely than at the higher level. 
 

2.2 EM Algorithm 
Cluster analysis is a process of grouping data into a class called a cluster so that objects in the same 

family have a high similarity to each other and have a high degree of similarity with objects of other clusters. 
Differentiability is assigned a value based on attribute values representing objects, usually distance measures 
are used. These cluster analysis is widely used in data mining, statistics, biology, and machine learning fields, 
and a wide variety of cluster algorithms have been proposed. The criteria for selecting the clustering 
algorithm depends on the data used and the purpose of the application. When learning clusters, the output is 
in the form of a diagram showing how instances belong to the cluster. The simplest case involves associating 
each instance with the number of clusters. The simplest case involves, for example, associating each instance 
with the number of clusters. In the simplest case, it involves associating each instance with the number of 
clusters. This is to place the instances in a two-dimensional space and visually divide each cluster into spaces. 
Some clustering algorithms allow one instance to belong to clusters, so the diagram is drawn by 
superimposing subsets representing each cluster, placing instances in two-dimensional space. Some 
algorithms associate instances with clusters stochastically rather than categorically. In this case, there is one 
probability or instance of membership in each instance that belongs to each cluster. This special association 
is intended to be a probabilistic result, so the sum of the probability values for each example is 1. Other 
algorithms can be used to create clusters with a hierarchical structure so that the instance space from the 
top-level clusters can be divided into only a few clusters, each clustering pointing to its own sub cluster each 
time it goes down. In this case, the elements combined at the lower level are clustered more closely than at 
the higher level. 

The EM algorithm, on the other hand, offers more solutions than any detailed algorithm. The core of the 
EM algorithm is the concept of incomplete data. Incomplete data can be generated generally by omissions 
due to failure to fully record observations or omission from a theoretical point of view. Therefore, we 
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