DOI QR코드

DOI QR Code

Optimization-Based Determination of Apollo Guidance Law Parameters for Korean Lunar Lander

달착륙 임무를 위한 최적화 기반 아폴로 유도 법칙 파라미터 선정

  • Jo, Byeong-Un (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Jaemyung (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2017.04.28
  • Accepted : 2017.07.28
  • Published : 2017.08.01

Abstract

This paper proposes an optimization-based procedure to determine the parameters of the Apollo guidance law for Korean lunar lander mission. A lunar landing mission is formulated as a trajectory optimization problem to minimize the fuel consumption and the reference trajectory for the lander is obtained by solving the problem in the pre-flight phase. Some parameters of the Apollo guidance, which are coefficients of the polynomial used to define the guidance command, are selected based on the reference trajectory obtained in the pre-flight phase. A case study for the landing guidance of Korean lunar lander mission using the proposed procedure is conducted to demonstrate its effectiveness.

본 논문에서는 한국형 달 착륙 임무를 위한 아폴로 유도 법칙의 파라미터 선정을 위한 최적화 기반의 절차를 제안하였다. 달 착륙 문제를 연료 소모량을 최소화하기 위한 궤적 최적화 문제로 공식화하였으며 비행 이전 단계에서 본 문제를 풀어 착륙선의 기준 궤적을 획득할 수 있다. 아폴로 유도의 파라미터들은 유도 명령을 정의하기 위해 사용되는 다항식의 계수들이며, 비행 이전 단계에서 구해진 기준 궤적을 기반으로 선정된다. 제안된 절차의 효과를 입증하기 위해, 본 절차를 사용한 한국형 달 착륙 임무의 착륙 유도 사례연구를 수행하였다.

Keywords

References

  1. E. C. Wong and G. Singh, "Guidance and Control Design for Hazard Avoidance and Safe Landing on Mars," Journal of Spacecraft and Rockets, Vol. 43, No. 2, 2006, pp. 378-384 https://doi.org/10.2514/1.19220
  2. S. Li, X. Jiang, and T. Tao, "Guidance Summary and Assessment of the Chang'e-3 Powered Descent and Landing," Journal of Spacecraft and Rockets, Vol. 53, No. 2, 2016, pp. 258-277. https://doi.org/10.2514/1.A33208
  3. G. W. Cherry, "A Class of Unified Explicit Methods for Steering Throttleable and Fixed-thrust Rockets," AIAA Guidance and Control Conference, Cambridge, 1963.
  4. A. R. Klumpp, "A Manually Retargeted Automatic Landing System for the Lunar Module (LM)," Journal of Spacecraft and Rockets, Vol. 5, No. 2, 1968, pp. 129-138 https://doi.org/10.2514/3.29204
  5. A. R. Klumpp, "Apollo Lunar-Descent Guidance," Massachusetts Institute of Technology, Cambridge, 1971
  6. B. W. Barbee and D. E. Gaylor, "Automated Real-Time Targeting and Guidance (ARTGUID) for Lunar Descent and Precision Landing," AAS Guidance and Control Conference, Breckenridge, CO, 2010
  7. D. M. Azimov, "Enhanced Apollo-Class Real-Time Targeting and Guidance for Powered Descent and Precision Landing," AIAA Guidance, Navigation, and Control Conference, Boston, MA, 2013.
  8. F. V. Bennett, "Apollo experience Report - Mission Planning for Lunar Module Descent and Ascent," Apollo Experience Report, Manned Spacecraft Center, Houston, Texas, 1972.
  9. G. W. Cherry, "A General, Explicit, Optimizing Guidance Law for Rocket-Propelled Spacecraft,", AIAA Astrodynamics Guidance and Control Conference, Los Angeles, CA, 1964.
  10. D.-Y. Rew, G. Ju, S. Lee, K. Kim, S. Kang, and S.-R. Lee, "Control System Design of Korea Lunar Lander Demonstrator," Acta Astronautica, Vol. 94, Issue. 1, 2014, pp. 328-337. https://doi.org/10.1016/j.actaastro.2013.03.023