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Abstract

This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict 

the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence 

velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing 

structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method 

is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then 

structural dynamic responses are computed. The numerical solution of the wing structure’s responses to a random turbulence 

profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input 

layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of 

dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was 

discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional 

moments of the wing structure.

Key words: ��Atmospheric turbulence, Artificial neural network, Gust response, Unsteady vortex-lattice method

1. Introduction

Atmospheric turbulence has been of great importance since 

the earliest days of aeronautical science [1,2]. The occurrence 

of atmospheric turbulence could be one of major obstacles to 

the success of aircraft performance. Estimating loads arising 

from atmospheric gusts is a classical problem that has been 

addressed in the requirements of Federal Aviation Regulations 

Part 25 (FAR 25) [3] and Certification Specifications Part 

25 (CS 25) [4] for the large airplane category. Turbulence 

models with the Dryden or the von Karman forms [5] of the 

power spectral density (PSD) are frequently used to evaluate 

the performance or dynamic loads of airplanes during 

flight. Based on several assumptions, such as stationarity 

and Gaussian distribution, atmospheric turbulence can be 

generated in the time domain in the form of a random process 

[6,7]. From time-domain simulation results, various effects of 

atmospheric turbulence on the flight dynamic and structural 

characteristics of airplanes may be clarified.

For the simulations of structural dynamic responses while 
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encountering gusts, several aerodynamic models with the 

different levels of fidelity and efficiency have been utilized. 

For example, Kanda and Dowell [8] used a simple low-order 

two-dimensional model based on the potential flow theory 

with the inclusion of the Wagner and the Kussner functions for 

the effect of aerodynamic unsteadiness. On the other hand, 

higher-order methods, such as the doublet-lattice method, 

the unsteady vortex-lattice method, and the computational 

fluid dynamics (CFD) method have been employed by 

Khodaparast and Cooper [9], Wang et al. [10], and Raveh [11], 

respectively. Amongst these, the doublet-lattice method is a 

frequency-domain method with the applicability restricted 

to only linear aerodynamic problems [12]. To obtain time-

domain solutions by this method, approximation techniques, 

such as those based on rational functions [13], must be used. 

In general, aerodynamic unsteadiness is important for the 

estimations of dynamic gust responses. When unsteady 

aerodynamics is considered, aerodynamic loads are not 

only dependent on the current flight state, but also on the 

flow history. Therefore, the computational cost may increase 

dramatically, especially when gust responses during a long 

duration of flight time are required to be determined. Using 

low-order aerodynamic methods such as that by Kanda 

and Dowell [8], the computational time could be reduced; 

however, this type of method may not have good fidelity 

while dealing with a three-dimensional problem.

On the basis of the above-mentioned studies, it is necessary 

to develop a computational method with high fidelity and 

modest computational effort to estimate the dynamic loads of 

airplane structures due to atmospheric turbulence. Recently, 

the concept of artificial neural network (ANN) has become 

popular in many fields, including aerospace engineering 

[14,15]. ANNs are built to mimic the way a biological brain 

solves problems by connecting large clusters of neurons. 

Regarding aeroelastic analyses, ANNs have been applied 

for the development of reduced-order models to predict 

the behaviors of structural dynamic responses in different 

conditions, such as flutter and limit cycle oscillations [16,17]. 

The application of ANNs to predict the dynamic responses 

of aircraft wing structures due to random atmospheric 

turbulence will be introduced for the first time in this 

paper. For this purpose, a three-layer ANN is developed and 

trained. After the training process, the prediction results of 

wing structural responses while encountering atmospheric 

turbulence by the ANN are validated against numerical 

solutions from structural dynamic equations for various 

different cases. The turbulence velocity is generated in the 

form of a stationary Gaussian random process that has the 

PSD given by the von Karman equation. The nonlinear 

unsteady vortex-lattice method (UVLM) and the classical 

beam theory are respectively applied for aerodynamic and 

structural problems. Before calculating dynamic responses 

due to atmospheric turbulence, the trim condition is 

obtained by an iterative method.

2. Material and Methods

2.1 Atmospheric Turbulence Model

Alike other studies by Beal [6], and Gao and Gu [7], the 

velocity of atmospheric turbulence is assumed to take 

the form of a stationary Gaussian random process, whose 

statistic characteristics do not change over time. Moreover, 

the effect of the vertical velocity component dominates those 

of the longitudinal and lateral components. Therefore, in this 

study, only the vertical turbulence velocity is considered, 

which is similar to the approach used in the literatures [8–

10]. The turbulence model has the von Karman form with the 

PSD Φ given as [5]
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where the frequency ω is in rad/s, σw is the root-mean-square (RMS) gust velocity, Ls is the scale of 

turbulence, and V is the flight speed. In this study, the scale of turbulence Ls is equal to 762 m, 

according to FAR 25 [3]. The flight speed V is set to 700 km/h that is typical for jet transport airplanes.

The airplane is assumed to fly at an altitude of 8.0 km, corresponding to an air density of 0.5 kg/m3.

To generate the turbulence velocity, a band-limited white noise is passed through an appropriate 

filter provided by Ly and Chan [18]. The simulated turbulence velocity with an RMS gust velocity σw

of 6.0 m/s is shown in Fig. 1 together with its PSD in comparison with a theoretical curve given by

equation (1). Good agreement found in Fig. 1b has validated the method used to generate the 

atmospheric turbulence velocity in this study.

2.2 Structural Model

The present study employs the planform, as well as the mass and structural characteristics of a wing 

model given in the literature [19]. The wing has a span of 25.7 m, the planform area is 104.8 m2, and 

the mass of the wing equals 22243.7 kg. The details about the wing structure and its geometry can be 

found in [19]. The wing is modeled by a classical (Euler-Bernoulli) beam undergoing bending and 
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Fig. 1. Time history of simulated turbulence velocity (a); simulated and theoretical velocity PSDs (b)
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Fig. 1. ��Time history of simulated turbulence velocity (a); simulated 
and theoretical velocity PSDs (b)
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flight speed. In this study, the scale of turbulence Ls is equal to 

762 m, according to FAR 25 [3]. The flight speed V is set to 700 

km/h that is typical for jet transport airplanes. The airplane 

is assumed to fly at an altitude of 8.0 km, corresponding to an 

air density of 0.5 kg/m3.

To generate the turbulence velocity, a band-limited white 

noise is passed through an appropriate filter provided by Ly 

and Chan [18]. The simulated turbulence velocity with an 

RMS gust velocity σw of 6.0 m/s is shown in Fig. 1 together 

with its PSD in comparison with a theoretical curve given 

by equation (1). Good agreement found in Fig. 1(b) has 

validated the method used to generate the atmospheric 

turbulence velocity in this study.

2.2 Structural Model

The present study employs the planform, as well as the 

mass and structural characteristics of a wing model given 

in the literature [19]. The wing has a span of 25.7 m, the 

planform area is 104.8 m2, and the mass of the wing equals 

22243.7 kg. The details about the wing structure and its 

geometry can be found in [19]. The wing is modeled by a 

classical (Euler-Bernoulli) beam undergoing bending and 

torsional deformations. Bending and torsional modes are 

obtained by a modal analysis using a finite-element method 

(FEM). These vibration modes will be coupled together later 

in the structural dynamic equations of the wing. The beam 

is divided into 50 two-node elements, and at each node we 

consider four degrees of freedom, including the vertical 

displacement w, rotation θ and their derivatives with respect 

to the coordinate along the beam axis. A more detailed 

description of the FEM can be found in [20]. The first four 

modes, including the two bending modes and two torsional 

modes of the right half of the wing, are illustrated in Fig. 2 

together with their natural frequencies. Nguyen and Han [21] 

have indicated that for the current wing model, the inclusion 

of the first four modes are sufficient for the structural 

dynamics analysis. It is observed that the natural frequencies 

of the first two modes (1.86 Hz and 3.73 Hz) computed by the 

present FEM are close to the estimations by Bisplinghoff et 

al. [19] (2.04 Hz and 3.56 Hz). 

2.3 Aerodynamic Model

The present study employs the nonlinear UVLM, which 

can provide the surface pressure difference between the 

upper and lower wing surfaces. Moreover, the wake is allowed 

to transport freely with the local velocity of the flow field; 

therefore, the effects of the wing-tip vortex and wake roll-up 

can be estimated precisely with this nonlinear aerodynamic 

model. The fundamental principles of the nonlinear UVLM 

could be found in the literatures [22–24]. According to 

these, the wing is discretized into a system of quadrilateral 

panels, on each we place a vortex ring. Moreover, each panel 

has a collocation point that is located at the centroid of the 

panel’s corners. At the collocation points, we apply the no-

Fig. 2. The first four vibration modes of the wing

Fig. 3. Aerodynamic panel mesh

Undeformed shape

First bending mode shape (1.86 Hz)

Second bending mode shape (6.98 Hz)

First torsional mode shape (3.73 Hz)

Second torsional mode shape (17.45 Hz)
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Fig. 2. The first four vibration modes of the wing
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penetration boundary condition, which ensures that the 

normal component of the fluid velocity relative to the wing 

surface is zero. The Kutta condition is satisfied at the trailing 

edge of the wing; hence, all vortices are shed from this edge 

to form the free wake. The pressure difference between the 

lower and upper surfaces of the wing is calculated by the 

unsteady Bernoulli equation [22]. The panel mesh of the 

undeformed wing planform is shown in Fig. 3.

To validate the aerodynamic model, the unsteady lift 

coefficients CL of rectangular wings undergoing a sudden 

startup are computed and compared with those from the 

unsteady panel method combined with vortex-particle 

wakes by Willis et al. [25]. Here, we consider two wing models 

with the same chord length of 1.0 m, the aspect ratios AR of 

these two wings are 4 and 8, and the free-stream velocity is 

1.0 m/s. The good consistency between the results from the 

two methods (Fig. 4) has validated the present aerodynamic 

model.

The airplane model flies at 700 km/h at an altitude of 

8 km, corresponding to a Mach number M equal to 0.63. 

Therefore, the effect of compressibility must be included 

in the computation. For high-aspect-ratio wings, such as 

the current wing model, it is possible to apply the Prandtl-

Glauert rule of the two-dimensional compressible flow [22]. 

Therefore, the pressure coefficient of a compressible flow 

CpM could be derived from the incompressible value Cp0 as 

follows:
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2.4 Aeroelastic Coupling

To solve the aeroelastic problem, the wing structure is coupled with the nonlinear aerodynamic 

model. This paper supposes that a level flight at a constant speed is maintained, which is similar to 

assumptions in analyses of Zhang and Xiang [26] and Wang et al. [10]. Initially, the angle of attack 

and the deformed shape of the wing in the trim condition is obtained; and then under the trim

condition, the wing structure is subject to various random atmospheric turbulence profiles.

2.4.1 Trim Search Method

The trim condition is found by an iterative method as shown in Fig. 5. Firstly, the aerodynamic 

pressure distribution on the wing surface {Δp} is computed. Wing deformation {δ} due to the 

aerodynamic pressure and mass distributions is then calculated. Comparing the difference between the 

current deformation {δ}i and the (i-1)th iteration of deformation {δ}i-1 with a prescribed error tolerance 

ε1, we can check the convergence of the deformation solution. The deformation solution is obtained

when the maximum error for bending is less than 1.0 cm (0.04% of the wing span), and that for 

torsion is less than 0.06 deg. Once the converged deformation has been achieved, lift is compared 
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Fig. 3. Aerodynamic panel mesh

AR = 8

AR = 4

Fig. 4. Evaluations of lift coefficients CL of rectangular wings undergoing a sudden startup by the 
present aerodynamic model and by Willis et al. [25]
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Fig. 4. ��Evaluations of lift coefficients CL of rectangular wings undergo-
ing a sudden startup by the present aerodynamic model and 
by Willis et al. [25]
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Fig. 5. ��Flowchart of the trim search method
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deformation {δ} due to the aerodynamic pressure and mass 

distributions is then calculated. Comparing the difference 

between the current deformation {δ}i and the (i-1)th iteration 

of deformation {δ}i-1 with a prescribed error tolerance ε1, we 

can check the convergence of the deformation solution. The 

deformation solution is obtained when the maximum error 

for bending is less than 1.0 cm (0.04% of the wing span), and 

that for torsion is less than 0.06 deg. Once the converged 

deformation has been achieved, lift is compared with the 

total weight of the airplane. The trim condition is satisfied 

when the difference between them is below ε2=10 N (0.003% 

of the total weight). If this condition is not satisfied, the 

derivative of the lift L with respect to the angle of attack α 

is computed, and the increment of the angle of attack Δα is 

determined as

with the total weight of the airplane. The trim condition is satisfied when the difference between them 

is below ε2=10 N (0.003% of the total weight). If this condition is not satisfied, the derivative of the 

lift L with respect to the angle of attack α is computed, and the increment of the angle of attack Δα is

determined as

/
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where, M is the total mass of the airplane, g is the gravitational acceleration, and L is the lift force.

After running the trim search program, the trim angle of attack was found to be 3.75 deg and the 

deformed shape of the wing in the trim condition is indicated in Fig. 6.

2.4.2 Structural Dynamic Equations

Figure 7 shows a wing-fixed coordinate system that has an origin located at the wing root. The y-

axis of the coordinate system coincides with the elastic axis of the wing. E and C are the elastic center 

and the center of mass of a local wing cross section, respectively. The vertical displacement w at a 

location (x,y) and time t due to dynamic responses can be expressed as
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and two torsional modes, which are illustrated in Fig. 2. ri and sj are time-dependent functions.
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In which, l is the wing span, xL.E. and xT.E. respectively represent the coordinates of the leading and 

trailing edges on the x-axis, and ρ is the mass of a unit area of the wing planform. From equation (4)

and the orthogonality of the mode shape functions [27], it follows that
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Here, m and Im are mass and inertia of moment per unit wing length; σ is the coordinate of the center 

of mass C on the x-axis of the wing-fixed coordinate system (Fig. 7). 
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In this equation, Np denotes the total number of aerodynamic panels; Fk is the aerodynamic force 

acting on the kth panel; xk and yk are the coordinates of the kth panel’s collocation point on the x and y
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By applying the Lagrange’s equation of the second kind [27] along with the expressions from 

equations (6), (9) and (11), we can derive
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where M and K are generalized mass and stiffness matrices, Q and q are the vectors of the 
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In this equation, Np denotes the total number of aerodynamic panels; Fk is the aerodynamic force 

acting on the kth panel; xk and yk are the coordinates of the kth panel’s collocation point on the x and y 

axes, respectively. 

By applying the Lagrange’s equation of the second kind [27] along with the expressions from 

equations (6), (9) and (11), we can derive 
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where M and K are generalized mass and stiffness matrices, Q and q are the vectors of the 
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given by equations (13)-(16): 
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Equation (12) will be solved numerically using the central finite difference scheme with the second-

order accuracy [28]. 

 

2.5 Artificial Neural Network Model 

To predict the responses of the wing structure to random atmospheric turbulence, a recurrent ANN 

with an external input is used. The turbulence velocity v and the generalized coordinate q are the input 

and the output of the network, respectively. The network is developed in MATLAB software [29], and 

its layout is sketched in Fig. 8. Here, the input layer of the network includes a bias b1 together with 

the time series of the turbulence velocity v1, v2, …, vn and the generalized coordinates q1, q2, …, qn 

from the recent n time steps. The hidden layer comprises a bias b2 and 50 neurons z1, z2, …, z50. 

Biases can be perceived as “extra” neurons that are added to each layer and not connected to any 

previous layer. The introduction of biases allows us to shift transfer functions left or right flexibly, 

then the training process becomes more effective. The network predicts the current value of the 

generalized coordinate q, which is fed back to become an input qn for the next prediction. The value 

of the delay number n may have a significant influence on the quality of prediction results, and the 

selection of n will be discussed in the following section. Sigmoid and linear transfer functions are 

respectively used in the hidden and the output layers. The input and the hidden layers, as well as the 

hidden and the output layers are connected to each other by the sets of weights Wi and Wo, 

respectively. 

For the training process, data are randomly divided with 70% used for training and 30% for testing. 

The network utilizes the Bayesian regularization backpropagation that updates the weights and biases 

according to the Levenberg-Marquardt optimization method [29,30]: 
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respectively. The network is developed in MATLAB software 

[29], and its layout is sketched in Fig. 8. Here, the input layer 

of the network includes a bias b1 together with the time series 

of the turbulence velocity v1, v2, …, vn and the generalized 

coordinates q1, q2, …, qn from the recent n time steps. The 

hidden layer comprises a bias b2 and 50 neurons z1, z2, …, 

z50. Biases can be perceived as “extra” neurons that are added 

to each layer and not connected to any previous layer. The 

introduction of biases allows us to shift transfer functions 

left or right flexibly, then the training process becomes 

more effective. The network predicts the current value of 

the generalized coordinate q, which is fed back to become 

an input qn for the next prediction. The value of the delay 

number n may have a significant influence on the quality of 

prediction results, and the selection of n will be discussed in 

the following section. Sigmoid and linear transfer functions 

are respectively used in the hidden and the output layers. 

The input and the hidden layers, as well as the hidden and 

the output layers are connected to each other by the sets of 

weights Wi and Wo, respectively.

For the training process, data are randomly divided with 

70% used for training and 30% for testing. The network 

utilizes the Bayesian regularization backpropagation that 

updates the weights and biases according to the Levenberg-

Marquardt optimization method [29,30]:

respectively.

For the training process, data are randomly divided with 70% used for training and 30% for testing.

The network utilizes the Bayesian regularization backpropagation that updates the weights and biases 

according to the Levenberg-Marquardt optimization method [29,30]:

( ) 1

1
T T

k k µ
−

+ = − +W W J J I J e (17)

where W is a vector that contains all the weights and biases; J is the Jacobian matrix consisting of the 

first derivatives of network errors with respect to the weights and biases; e is a vector of network 

errors; I is a unit matrix; and μ is a learning step size parameter, whose value decreases after each 

successful step. The use of the Bayesian regularization, which minimizes a linear combination of 

squared errors and weights, can assure a better solution for noisy problems. More details about the

Bayesian regularization can be found in [31].

3. Results and Discussion

The ANN depicted in Fig. 8 is trained to predict the dynamic responses of the wing structure. The 

values of the weights and biases are updated during the training process by equation (17). For this 

process, the program uses data related to the turbulence profile shown in Fig. 1, and its corresponding 

solution (generalized coordinate vector q) obtained by numerically solving the dynamic equation (12). 

The time histories of the generalized coordinates used for the training are shown in Fig. 9. Fig. 10

shows the wake visualization when the airplane is encountering atmospheric turbulence.

As mentioned earlier, the number of time delay n is of great importance in our ANN; thus, it is 

necessary to choose a proper value that can give a compromise between accuracy and computational 

complexity. Prediction errors corresponding to the time delay number n varying from 5 to 30 are 

investigated. In this task, turbulence profiles used for the training and prediction processes have the 

RMS gust velocity σw of 6 m/s, and the durations of these profiles are 20 and 45 seconds, respectively.

The effects of the time delay number n on the prediction errors of the bending and torsional moments 

are shown in Fig. 11. In this figure, the quality of the predictions is indicated through the relative 

errors of the bending and torsional moments at the wing root. The relative errors are defined as the 
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J is the Jacobian matrix consisting of the first derivatives 

of network errors with respect to the weights and biases; 

e is a vector of network errors; I is a unit matrix; and μ is a 

learning step size parameter, whose value decreases after 

each successful step. The use of the Bayesian regularization, 

which minimizes a linear combination of squared errors and 

weights, can assure a better solution for noisy problems. More 
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related to the turbulence profile shown in Fig. 1, and its 

corresponding solution (generalized coordinate vector q) 

obtained by numerically solving the dynamic equation 

(12). The time histories of the generalized coordinates used 

for the training are shown in Fig. 9. Fig. 10 shows the wake 

visualization when the airplane is encountering atmospheric 

turbulence.

As mentioned earlier, the number of time delay n is 

of great importance in our ANN; thus, it is necessary to 

choose a proper value that can give a compromise between 

accuracy and computational complexity. Prediction errors 

corresponding to the time delay number n varying from 5 

to 30 are investigated. In this task, turbulence profiles used 

for the training and prediction processes have the RMS 

gust velocity σw of 6 m/s, and the durations of these profiles 

are 20 and 45 seconds, respectively. The effects of the time 

delay number n on the prediction errors of the bending and 

torsional moments are shown in Fig. 11. In this figure, the 

quality of the predictions is indicated through the relative 

errors of the bending and torsional moments at the wing 
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root. The relative errors are defined as the ratios of the RMS 

errors to the RMS moments. The exact bending and torsional 

moments are obtained by solving equation (12) numerically. 

It should be noted that the values of the moments in the trim 

condition are excluded from the results.

It is observed that the prediction becomes more accurate 

as the number of time delay n increases. After the value of 20, 

there is almost no improvement in the prediction results. The 

number of time delay is associated with the length of the free 

wake involved in the computation. When n equals 20, this 

length is about 1.5 times of the wing span. With a lower value 

of n, the wake included in the computation becomes shorter; 

therefore, the result is less accurate due to the insufficiency 

of the wake information. Considering the compromise 

between the accuracy of the prediction and the complexity 

of the training process, n is set to 20 for the present problem.

Using the time delay number n of 20, the validity of the 

ANN is tested against the variation of the RMS gust velocity 

σw. Various different turbulence profiles with a duration of 45 

seconds and σw varying from 2 m/s to 8 m/s are generated 

and shown in Fig. 12. The value of σw from 2 m/s to 8 m/s 

can represent various levels of turbulence intensity ranging 

from light turbulence to extremely severe one [32]. Fig. 13 

exhibits the time histories of predicted and exact bending 

and torsional moments along with their errors.

From Fig. 13 and Table 1, it is seen that the ANN can 
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predict structural dynamic responses due to atmospheric 

turbulence with a high level of accuracy. Particularly, the 

computational time is reduced dramatically with the use of 

the ANN. Using the conventional way to estimate structural 

dynamic responses due to atmospheric turbulence, equation 

(12) has to be solved numerically. Thus, the program is 

required to update the wake geometry and compute the 

aerodynamic pressure distribution after each time step. This 

process demands a great computational resource to store 

all of the information related to the history of the wake. To 

obtain the results corresponding to a 45-second turbulence 

profile with the implementation of a parallel computing 

technique, a computer using an eight-thread processor has 

to run about one hour. When the ANN approach is applied, 

the equation (12) is required to be solved only once for a 

relatively short-duration turbulence profile (20 seconds) to 

obtain the training data. Once the network has been trained, 

it can be applied for any other longer-duration atmospheric 

turbulence profile. Moreover, instead of running a lengthy 

solving process as that of the conventional approach, the 

ANN can provide the predicted results instantaneously.

As shown in Fig. 13 and Table 1, when the RMS gust velocity 

σw ranges from 2 m/s to 6 m/s, the ANN can predict the 

dynamic responses of the wing structure due to atmospheric 

turbulence with small errors that are below 5%. However, 

when σw equals 8 m/s, prediction errors could be over 10%. It 

is due to the fact that the training data used in this study are 

from a turbulence profile with σw of 6 m/s (Fig. 1). For a more 

severe atmospheric turbulence profile, there may exist some 

intervals of time, in which the velocity is higher than that 

from the training data (Fig. 12). In other words, the machine 

has not been trained to properly deal with these high velocity 

cases; hence, some noticeable errors could occur. However, 

turbulence with σw=8 m/s is regarded as an extremely severe 

case that may happen only once in about 5×105 flight hours 

[32]. Moreover, it is also found that the prediction results of 

the bending moment by the ANN is generally more precise 

than those of the torsional moment. This finding can be 

explained by the higher natural frequencies of the torsional 

modes (Fig. 2), which make torsional vibrations noisier, and 

therefore, more difficult to predict than bending vibrations.

The prediction errors of the generalized coordinates r1, r2, s1 

and s2 are also estimated and shown in Table 2. By comparing 

the values in Tables 1 and 2, it is found that the errors of the 

bending and torsional moments are substantially associated 

with those of the generalized coordinates r1 and s1, which 

are corresponding to the first bending and torsional modes, 

respectively.

For the next analysis, the effect of the scale of turbulence 

Ls on the accuracy of the prediction is studied. Together with 

the case of Ls equal to 762 m, the errors in two other cases 

corresponding to Ls of 508 m and 1143 m are calculated and 

given in Table 3. Here, the RMS gust velocity σw is 6 m/s.

It is easy to recognize that the errors tend to grow as the 

scale of turbulence decreases. When studying the variation of 

the velocity PSD curve in Fig. 14, it is found that atmospheric 

Table 1. ��Relative errors of bending and torsional moments. σf and σp 
are RMS values of bending and torsional moments; σe

f and σe
p 

are their RMS errors.

Table 1. Relative errors of bending and torsional moments. σf and σp are RMS values of bending and 
torsional moments; e

fs and e
ps are their RMS errors.

σw (m/s) e
fs /σf (%) e

ps /σp (%) 
2 1.3 1.7
4 1.2 1.9
6 2.9 4.8
8 7.3 19.8
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Table 2. Relative errors of generalized coordinates r1, r2, s1 and s2.Table 2. Relative errors of generalized coordinates r1, r2, s1 and s2.

σw (m/s)
1 1

/e
r rs s (%)

2 2
/e

r rs s (%) 
1 1

/e
s ss s (%)

2 2
/e

s ss s (%)

2 1.3 3.7 1.7 9.0
4 1.2 2.1 1.9 4.8
6 3.1 1.7 4.7 4.5
8 7.8 7.8 19.6 10.7
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Table 3. ��Relative errors of bending and torsional moments against 
the scale of turbulence Ls.Table 3. Relative errors of bending and torsional moments against the scale of turbulence Ls.

Ls (m) e
fs /σf (%) e

ps /σp (%) 
508 4.1 9.7
762 2.9 4.8
1143 2.1 2.6
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Fig. 14. Velocity PSD curve against the scale of turbulence Ls
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turbulence with a lower Ls has greater power distributed 

in a high frequency range. Consequently, a lower scale of 

turbulence will result in a noisier input, and thus, a lower 

level of prediction accuracy.

Finally, to confirm the applicability of the ANN approach 

for gust response prediction problems, results corresponding 

to other values of flight speed V are obtained. In fact, when 

the flight speed is changed, the trim condition has to be 

found again. In addition, the ANN is reconstructed and 

trained. The number of time delay n is altered accordingly 

so that the length of the wake included in the computation 

is about 1.5 times of the wing span. Thus far, we have studied 

only the case corresponding to the flight speed V of 700 km/h. 

When V is changed to 630 km/h and 770 km/h, the relative 

errors of the bending moment are 3.6% and 1.7%, and those 

of the torsional moment equal 5.2% and 8.1%, respectively. 

In general, these errors are relatively small and acceptable 

for gust response prediction tasks.

4. Conclusions

This paper has presented an alternative low-cost model 

based on artificial neural networks (ANNs) to predict the 

dynamic responses of a wing structure due to random 

atmospheric turbulence in the time domain. The wing 

structure is simplified by a classical beam, and the nonlinear 

unsteady vortex-lattice method is applied to compute the 

pressure distribution. The angle of attack and the deformed 

shape of the wing in the trim condition were achieved by 

an iterative method. The Lagrange’s equation of the second 

kind was used to derive the governing equations for the 

structural dynamics problem. In this study, a recurrent ANN 

was developed and trained based on data obtained from a 

turbulence profile with a root-mean-square gust velocity of 

6 m/s. The validity of the ANN was confirmed for various 

different cases of long-duration turbulence. When the 

ANN is used, instead of running a numerical program for 

hours, the accurate results of the wing structure’ dynamic 

responses due to atmospheric turbulence could be obtained 

instantaneously. The results also showed that when the ANN 

is applied to a turbulence model with a higher root-mean-

square gust velocity than that of the training data, there 

could be some errors that are explained by the existence of 

high velocity intervals. Predictions by the ANN for bending 

moments, whose vibrations occur at lower frequencies, 

appear to be more precise than those for torsional moments. 

Similarly, for atmospheric turbulence with a larger scale 

of turbulence Ls, the ANN can produce a better prediction 

result. Moreover, the validity of the current approach was 

also confirmed with respect to several values of flight 

speed. In general, in most cases, the relative errors of the 

bending and torsional moments are lower than 5%; thus, 

it can be concluded that using ANNs is an efficient, high-

fidelity alternative method for the problems of gust response 

predictions.
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