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Abstract

According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law 

can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. 

The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of 

leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched 

by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the 

flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can 

guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV 

can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a 

stationary target and a moving target, respectively. 
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1. Introduction

With the quick development of the aerospace technology, 

conventional combat strategy using a single flight vehicle 

cannot satisfy the demands of combat mission in complicated 

combat fields. In order to improve the hit accuracy and enlarge 

the defense area, cooperative combat system using multiple 

flight vehicles (MFV) has been a research focus in recent 

years. Cooperative combat system can involve in a variety 

of fields, including cooperative path planning [1], formation 

control [2], cooperative guidance [3], multiple sensor and data 

fusion [4], etc. Cooperative guidance is the key technology 

in cooperative attack, which plays an important role in the 

cooperative combat.

Salvo attack is a typical combat mode in the cooperative 

combat, requiring MFV from different positions and directions 

to attack the target simultaneously [5]. Salvo attack can not 

only greatly improve the hit probability, but also enhance 

the effectiveness of attacks. Cooperative guidance for MFV 

has been getting increasing attentions in recent years. An 

impact time control guidance law (ITCG) was proposed, so 

MFV can reach the target at the specified time simultaneously 

[6].Wei X. built a three dimensional guidance model using 

vector calculation and designed a distributed cooperative 

guidance strategy [7]. In [8], the cooperative control problem 

of multi-missile systems was addressed, and a two-stage 

control strategy was proposed, aiming at simultaneous attack 

from a group of missiles at a stationary target. The coordinate 

variable is applied to MFV salvo attack in [7], in which a 

universal two-layer guidance structure was proposed, and 

the coordinate strategy can be realized by centralized and 

distributed coordinate control respectively. 

In salvo attack, all of the flight vehicles should be guided 

and controlled to attack the target simultaneously. Salvo 

attack is similar to multiple agent cooperative control, in 

networks of agents (or dynamic systems), “consensus” 

means to reach an agreement regarding a certain quantity of 

interest that depends on the state of all agents. A “consensus 

algorithm” (or protocol) is an interaction rule that specifies 

the information exchange between an agent and all of its 

neighbors in the network. The consensus theory has been 

applied to several fields, including formation control for 
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satellites, cooperative control for UAVs, multiple robots 

system distribution control, etc.[10]-[12]. Besides, an 

interesting area in multi-agent systems is the consensus 

of a group of agents with a leader, where the motion of 

the leader is independent in the group and the agents are 

necessary to follow its leader. This type of configuration can 

be found in large number of biological systems, which helps 

in designing the multi-agent systems. Leader-following 

consensus theory has been widely applied in the fields of 

distribution tracking [13][14], flocking algorithms[15],etc. 

Therefore, the research results of multi-agent cooperative 

control will be great significance for consensus research of 

leader-follower multi-vehicle system.

In recent years, finite time control has been fully 

developed and used in combination with multi-agent 

cooperative control. Two non-continuous finite time 

consensus protocols for continuous system were presented 

in [17]. On this basis, a general form of finite time consensus 

protocol was proposed in[18], in which consensus protocol 

can be in the form of continuous state feedback according 

to the selected parameter. The asymptotical stable control 

technology is frequently used in previous studies on 

cooperative guidance, but in salvo attack, the requirement 

for controlling the attack time is higher. Therefore, how to 

make the state of leader-follower MFV system converge in 

finite time is worth investigating.

Motivated by the problems discussed above, a novel 

cooperative guidance strategy is proposed for leader-

follower multi-vehicle system. The consensus problem is 

investigated through graph theory, and consensus protocol 

is presented. To guarantee the LOS angular stability, the 

finite time guidance law is designed for the flight vehicle via 

finite time control method. Simulation results are provided 

to demonstrate the effectiveness of the proposed approach.

The rest of the paper is organized as follows: the basic 

knowledge on graph theory and finite time control is given 

in Section 2. Section 3-4 describes the kinematics of MFV 

and formulation of cooperative guidance. In Section 5, a 

finite time consensus protocol is proposed to ensure that 

MFV arrive at the target simultaneously, and a finite time 

guidance law is designed to guarantee that LOS angular rates 

converge to zero in finite time. Simulation examples and 

analysis are shown in Section 6. Results and conclusions are 

summarized in Section 7.

2. Preliminaries

2.1 Graph Theory

Graph theory has been widely applied to the consensus 

research of multi-agent system. The weighted graph G=(v, ε, 
A) is used to represent the communication topology, v={1, 

2, 3, ..., n} is the vertex set, and 
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 
 

0
0lim , 0

t T x
x t x


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The finite time stability is defined as state of the system reaching equilibrium in a finite time, and 

then stabilized at the equilibrium point. Because fractional power exists in the finite time controller, 

the finite time controller has better robustness and disturbance rejection performance than non-finite-

time control systems. Therefore, finite time control has been a research focus in recent years 오류! 

참조 원본을 찾을 수 없습니다.[21]. 

Considering the following nonlinear system [10], 

    , 0 0, nx f x f x R    (1) 

where   nf x U R：  is continuous in an open neighborhood U of the origin.  

Definition 1. Considering the system (1), the origin 0x  is given as a finite-time-stable 

equilibrium of (1) if and only if the system is of finite-time convergence and Lyapunov stability.  

Finite-time convergence: for 0 0
nx U R   , there exists a continuous function 

    0: 0 0,T x U   , solution  0,x t x of system (1) satisfies:    0 0, 0x t x U  and 

 
 

0
0lim , 0

t T x
x t x


  for all  00,t T x  ; and  0, 0x t x  for  0t T x . The origin is given as a 
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Depending on the direction of edge, the graph can be divided into directed graph and undirected graph. 

The graph is called an undirected graph if and only if    , ,i j j i    , and 0ij jia a  . 

Otherwise, it is called a directed graph. Vertex j  is the neighbor of vertex i , the neighbor set of 

vertex i is denoted by   : , ,iN j v i j j i    .  
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globally finite-time-stable equilibrium if it is a finite-time-stable equilibrium with 0
nU U R  . 

Lemma 1  [22]. Considering the system (1), supposing there exists a continuous function 

  :V x U U


 such that the following conditions hold: 

(i)  V x  is positive definite. 

(ii) There exist real numbers 0  and 0 1c  , and an open neighborhood U U


 of the origin 

such that 

0cV V  . 

Then the origin is a finite-time-stable equilibrium of system (1). If nU U R


  and  V x is proper, 

then the origin is a globally finite-time-stable equilibrium.  

2.3 Finite Time Consensus of Leader-follower multi-agent system 

Considering a leader-follower multi-agent system composed of one leader and multiple followers, 

the dynamics of the followers is  

     , 1,2,...,i ix t u t i n   (2) 

where,  ix t R is the state of the ith follower,  iu t R is the control input. The state of the leader 

is in dependent of the ones of the followers. 

Definition 2. The leader-follower multi-agent system (2) is known to achieve the finite-time 

consensus, if for any initial states, there is a constant  0 0,T   , such that 

    
0

0lim 0it T
x t x t


  , (3) 

and 

    0 0, ,ix t x t t T i I    . (4) 

Lemma 2 [23]. Let  x t  be a solution of  x f x ,   00 nx x R  , where : nf U R  is 

continuous, U is an open subset of nR , and :V U R  is a local Lipschitz function such that 

   0D V x t  , where D  denotes the upper Dini derivative. Then with denoting the positive limit 

 such that 

the following conditions hold:

(i) V(x) is positive definite.
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(ii) There exist real numbers η>0 and 0<c<1, and an open 

neighborhood 
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set as  0x ,  0x U   is contained in the union of all the solutions that remain in 

  : 0S x U D V x   . 

Next, the homogeneity with dilation is given for the finite time convergence analysis. 

Function  V x  is homogeneous of degree R  with the dilation  1 2, ,..., nr r r r , 

0, 1,2,...,ir i n  , if for any 0,   

    1 2
1 2, ,...,r r rn

nV x x x V x    . (5) 

If 1 2 ... 1nr r r    , the dilation is trivial. 

For the following n dimensional system 

      1 2, , ,..., T n
nx t f x x x x x R   , (6) 

a continuous vector field         1 2, ,...,
T

nf x f x f x f x  is homogeneous of degree R  with 

the dilation  1 2, ,..., nr r r r , for any 0,   

    1 2
1 2, ,..., , 1,2,...,n ir rr r

i n if x x x f x i n      . (7) 

System (6) is called homogeneous if its vector field is homogeneous. Furthermore, 

      , 0 0, nx f x f x f x R      (8) 

is said to be locally homogeneous of degree R  with respect to the dilation  1 2, ,..., nr r r r , if 

 f x  is homogeneous of degree R  with respect to the dilation  1 2, ,..., nr r r  and f  is a 

continuous vector field satisfying 

 
 1 2

1 2

0

, ,...,
lim 0, 0,

r r rn
i n

ri

f x x x
x i I

  

 
   


. (9) 

For convenience, let         1 2, ,...,
T n

nx t x t x t x t R  , and    sig x x sign x  , where 

 sign  denotes the sign function, and x denotes the absolute value of the real number x . 

 
1, 0;
0, 0;
1, 0.

x
sign x x

x


 
 

 

, 
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of degree κ

6 

set as  0x ,  0x U   is contained in the union of all the solutions that remain in 

  : 0S x U D V x   . 

Next, the homogeneity with dilation is given for the finite time convergence analysis. 

Function  V x  is homogeneous of degree R  with the dilation  1 2, ,..., nr r r r , 

0, 1,2,...,ir i n  , if for any 0,   

    1 2
1 2, ,...,r r rn

nV x x x V x    . (5) 

If 1 2 ... 1nr r r    , the dilation is trivial. 

For the following n dimensional system 

      1 2, , ,..., T n
nx t f x x x x x R   , (6) 

a continuous vector field         1 2, ,...,
T

nf x f x f x f x  is homogeneous of degree R  with 

the dilation  1 2, ,..., nr r r r , for any 0,   

    1 2
1 2, ,..., , 1,2,...,n ir rr r

i n if x x x f x i n      . (7) 

System (6) is called homogeneous if its vector field is homogeneous. Furthermore, 

      , 0 0, nx f x f x f x R      (8) 

is said to be locally homogeneous of degree R  with respect to the dilation  1 2, ,..., nr r r r , if 

 f x  is homogeneous of degree R  with respect to the dilation  1 2, ,..., nr r r  and f  is a 

continuous vector field satisfying 

 
 1 2

1 2

0

, ,...,
lim 0, 0,

r r rn
i n

ri

f x x x
x i I

  

 
   


. (9) 

For convenience, let         1 2, ,...,
T n

nx t x t x t x t R  , and    sig x x sign x  , where 

 sign  denotes the sign function, and x denotes the absolute value of the real number x . 

 
1, 0;
0, 0;
1, 0.

x
sign x x

x


 
 

 

R with the dilation (r1, r2, ..., rn), the function 

f(x) is continuous and x=0 is asymptotically stable. If the 

homogeneity degree κ<0, then the equilibrium of system 

(2) is finite time stable. Moreover, if (9) holds, then the 

equilibrium of system (8) is locally finite time stable.

3. Multiple Flight Vehicles (MFV) Kinematics

Considering the situation where MFV attack against a 

target, the planar engagement geometry is shown in Fig. 1. 

X-O-Y is the inertial reference coordinate system, supposing 

there are one leader and multiple followers, Mi represents 

the leader, and Mi represents the ith follower, T represents 

the target. Subscript l, i, t represent the state of the leader, 

ith flight vehicle, and target respectively. V, A, θ, λD and R 

denote the speed, normal acceleration command, heading 

angle, LOS angle, and the distance between flight vehicle 

and target, respectively.

Fig. 1. Planar engagement geometry.
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According to the relative kinematics shown in Fig.1, 

the relative kinematic equations of the leader are given as 

follows:
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engineering significance for high-value target attack. 

Based on the requirement to complete different tasks, the flight vehicles can be divided into two 

classes: leader and followers. Followers accomplish their mission under command of the leader. 

Leader-follower strategy can reasonably distribute different types of flight vehicles, decreasing the 

redundant detection equipment, thus saving the cost. The effect of the flight vehicles can be 

maximized by collaboration work, and hence the purpose of “1+1>2” can be achieved. 

“Consensus” means that the individual in a multi-agent system can reach an agreement regarding a 

certain quantity of interest depending on the state of all agents by communicating with neighbors. 

Research for consensus problem has been more detailed since multi-agent cooperative control 

problem has been attracting more attentions in recent years, and consensus algorithms has been 
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quantity of interest depending on the state of all agents by 

communicating with neighbors. Research for consensus 

problem has been more detailed since multi-agent 

cooperative control problem has been attracting more 

attentions in recent years, and consensus algorithms has 

been widely applied in some new fields. MFV is required to 

attack the target simultaneously in cooperative guidance, 

so the states of flight vehicles should reach agreement. 

Therefore, cooperative guidance can attribute to the 

consensus problem.

Figure 2 shows two equivalent forms of consensus 

algorithms: (a) a network of integrator agents in which 

agent i receives the state xj of its neighbor, agent j, if there 

is a link (i, j) connecting the two nodes; and (b) the block 

diagram for a network of interconnected dynamic systems 

all with identical transfer functions P(s)=1/s. The collective 

networked system has a diagonal transfer function and is a 

multiple-input multiple-output (MIMO) linear system.

Research on consensus of multi-agent system has been 

carried out widely, in which leader-following consensus is an 

important consensus problem. Leader-following consensus 

theory has been applied to the fields of distribution tracking, 

flocking algorithms, mobile sensor networks [16], etc. 

Compared to the cooperative control with same labors, the 

superiority of leader-follower strategy is that one or several 

leaders with central roles can collaborate with simple and 

low cost followers to accomplish the mission. Therefore, 

this strategy can not only save the cost, but also improve 
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the robustness and adaptability of the whole system. In 

the mission of cooperative guidance with complicated and 

variable combat environment, the probability exposed to 

the enemy would increase if all the flight vehicles turn on 

their homing devices. Nevertheless, leader-follower strategy 

can decrease this probability, moreover, it can adjust the 

combat scheme according to the communication among 

flight vehicles, and hence enhance the battle performance 

of system.

Leader-follower structure is adopted in this paper, all the 

followers can receive the state information of the leader, and 

communicate with their neighbor. The states of followers 

need to be adjusted continuously in order to achieve 

agreement of all flight vehicles. The design of cooperative 

guidance law contains two key technologies: firstly, the LOS 

angular rates are required to converge; secondly, the arrive-

time of flight vehicles should be coordinated to attack the 

target simultaneously.

From the relative kinematics model described above, it is 

worth noting that the state of leader is independent of the 

one of follows, and followers can keep consistent with the 

leader. The cooperative guidance model is presented taking 

follower-target relative kinematics model as an example. In 

the LOS coordinate system, the relative kinematics equations 

are described as
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In consensus problem of leader-follower multi-vehicle system, states of the flight vehicles are 

required to reach agreement. A new variable denoting time-to-go goiT  is introduced to represent the 

time required to arrive the target for the ith flight vehicle, and the following algorithm is adopted to 

estimate the time-to-go as it has a high calculation precision in the terminal guidance. 
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Substituting (17) into (13) and (16) and combining with (15), the cooperative guidance model is 

obtained as follows, 
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It can be seen from the cooperative guidance model that two matters need considering. On the one 

hand, the time-to-go goiT  need to reach agreement of the team by control command  ˆRiu . 

Furthermore, substitute Ri iV R  and i i DiV R    to (18), yielding 
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Therefore, on the other hand, the LOS angular rates Di  should converge to zero by control 

command iu . Therefore, consensus problem of leader-follower multi-vehicle system can transform 

to the problem of time-to-go adjusting when LOS is stable. 

5. Design of cooperative guidance law for time consensus 

The cooperative attack of a leader with multiple followers is investigated in this paper. The 

communication topology between flight vehicles is shown in Fig. 3. 
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The arrow represents the direction of information flows. 
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state of followers cannot affect the leader. In the practical 
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complex detect device, and the follower vehicles with the 
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such that the system state fiT  can reach agreement in finite time. 

,(23)
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where aij(t) is the adjacency weight between follower flight 

vehicle i and j, bj(t)

6 

set as  0x ,  0x U   is contained in the union of all the solutions that remain in 

  : 0S x U D V x   . 

Next, the homogeneity with dilation is given for the finite time convergence analysis. 
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    1 2
1 2, ,...,r r rn

nV x x x V x    . (5) 

If 1 2 ... 1nr r r    , the dilation is trivial. 

For the following n dimensional system 

      1 2, , ,..., T n
nx t f x x x x x R   , (6) 

a continuous vector field         1 2, ,...,
T

nf x f x f x f x  is homogeneous of degree R  with 

the dilation  1 2, ,..., nr r r r , for any 0,   

    1 2
1 2, ,..., , 1,2,...,n ir rr r

i n if x x x f x i n      . (7) 

System (6) is called homogeneous if its vector field is homogeneous. Furthermore, 

      , 0 0, nx f x f x f x R      (8) 

is said to be locally homogeneous of degree R  with respect to the dilation  1 2, ,..., nr r r r , if 

 f x  is homogeneous of degree R  with respect to the dilation  1 2, ,..., nr r r  and f  is a 

continuous vector field satisfying 

 
 1 2

1 2

0

, ,...,
lim 0, 0,

r r rn
i n

ri

f x x x
x i I

  

 
   


. (9) 

For convenience, let         1 2, ,...,
T n

nx t x t x t x t R  , and    sig x x sign x  , where 

 sign  denotes the sign function, and x denotes the absolute value of the real number x . 

 
1, 0;
0, 0;
1, 0.

x
sign x x

x


 
 

 

R is the adjacency weight between follower 

i and leader at time instant t, φI is a continuous odd function 

satisfying 

13 

Replace fj fiT T  in (23) with goj goiT T , the finite time consensus protocol of leader-follower 

multi-vehicle system is  

          1 2
1

ˆ sig sig
n

Ri ij goj goi i goi gol
j

u a t T T b t T T
 

 


     (24) 

where (t)ija is the adjacency weight between follower flight vehicle i  and j ,  jb t R  is the 

adjacency weight between follower i  and leader at time instant t , l  is a continuous odd function 

satisfying   0go goT T   0goT  , and    go l goT c T o x    around 0goT   for some constant 

0, 1,2lc l  . 

Suppose that all the vehicles of the multi-vehicle system under consideration share a common state 

space. At any time, each vehicle updates its current state based on the information received from its 

neighbors. Undirected graphs are used to model communication topologies. Each vehicle is regarded 

as a node. Each edge  ,i j  or  ,j i   corresponds to an available information link between 

vehicle i  and vehicle j . In reality, the communication topology usually switches due to the link 

failure or creation. To describe the variable topologies, define a piecewise constant switching function

   0, 1,2,...,P m   , where m  denotes the total number of undirected graphs with all possible 

communication. The communication graph at time t is denoted by G . Consider an infinite sequence 

of nonempty, bounded and contiguous time interval  1,k kt t  , 0,1,2,...,k  such that the 

communication topology G switches at kt  and it does not change in time interval  1,k kt t  ,

0,1,2,...k  . Suppose that the communication topology G  switches between topologies

1 2 1 2( , , ; , , ; )m mG G G G G G   periodically in the order. Then there are m connection components with 

the corresponding sets of graph 1 2, , mG G G sequentially in each time interval   1,km k mt t 

 , 0,1,2,...k  . 

In each time interval   1,km k mt t 

 , system (24) can be decomposed into the following m subsystems 

         1 2
1

sig sig
n

goi ij goj goi i goi gol
j

T a t T T b t T T
 

 


    , 

, and 

13 

Replace fj fiT T  in (23) with goj goiT T , the finite time consensus protocol of leader-follower 

multi-vehicle system is  

          1 2
1

ˆ sig sig
n

Ri ij goj goi i goi gol
j

u a t T T b t T T
 

 


     (24) 

where (t)ija is the adjacency weight between follower flight vehicle i  and j ,  jb t R  is the 

adjacency weight between follower i  and leader at time instant t , l  is a continuous odd function 

satisfying   0go goT T   0goT  , and    go l goT c T o x    around 0goT   for some constant 

0, 1,2lc l  . 

Suppose that all the vehicles of the multi-vehicle system under consideration share a common state 

space. At any time, each vehicle updates its current state based on the information received from its 

neighbors. Undirected graphs are used to model communication topologies. Each vehicle is regarded 

as a node. Each edge  ,i j  or  ,j i   corresponds to an available information link between 

vehicle i  and vehicle j . In reality, the communication topology usually switches due to the link 

failure or creation. To describe the variable topologies, define a piecewise constant switching function

   0, 1,2,...,P m   , where m  denotes the total number of undirected graphs with all possible 

communication. The communication graph at time t is denoted by G . Consider an infinite sequence 

of nonempty, bounded and contiguous time interval  1,k kt t  , 0,1,2,...,k  such that the 

communication topology G switches at kt  and it does not change in time interval  1,k kt t  ,

0,1,2,...k  . Suppose that the communication topology G  switches between topologies

1 2 1 2( , , ; , , ; )m mG G G G G G   periodically in the order. Then there are m connection components with 

the corresponding sets of graph 1 2, , mG G G sequentially in each time interval   1,km k mt t 

 , 0,1,2,...k  . 

In each time interval   1,km k mt t 

 , system (24) can be decomposed into the following m subsystems 

         1 2
1

sig sig
n

goi ij goj goi i goi gol
j

T a t T T b t T T
 

 


    , 

 

around Tgo=0 for some constant cl>0, l=1, 2.

Suppose that all the vehicles of the multi-vehicle system 
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time, each vehicle updates its current state based on the 

information received from its neighbors. Undirected graphs 

are used to model communication topologies. Each vehicle is 

regarded as a node. Each edge 
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  1, , 0,1,2,..., ,km r km rt t t k m i I     . (25) 

Let i goi golT T   , (25)can be rewritten as 
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Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

(27)

Since the communication topology is connected in each 

interval 
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  1, , 0,1,2,..., ,km r km rt t t k m i I     . (25) 
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some constant 0, 1,2lc l  , so the leader-following finite time consensus can be achieved. 
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and  ib t  are invariant in each time interval  1,km r km rt t   , along the trajectory of system (26), 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

, k=0, 1, 2, ..., r=1, ..., m, there is at least 

one 
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Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 

function 1  satisfies    0 0go go goT T T    , and    l go l go goT c T o T    around 0goT   for 

some constant 0, 1,2lc l  , so the leader-following finite time consensus can be achieved. 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

 such that bi(t)>0 or j
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Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 

function 1  satisfies    0 0go go goT T T    , and    l go l go goT c T o T    around 0goT   for 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

I such that aij(t)>0 for 

any i
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Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 

function 1  satisfies    0 0go go goT T T    , and    l go l go goT c T o T    around 0goT   for 

some constant 0, 1,2lc l  , so the leader-following finite time consensus can be achieved. 
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  .Since the connection weight  ija t  

and  ib t  are invariant in each time interval  1,km r km rt t   , along the trajectory of system (26), 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

I. Then 
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Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 

function 1  satisfies    0 0go go goT T T    , and    l go l go goT c T o T    around 0goT   for 

some constant 0, 1,2lc l  , so the leader-following finite time consensus can be achieved. 
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and  ib t  are invariant in each time interval  1,km r km rt t   , along the trajectory of system (26), 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

 if and only if δi=δj=0, i.e., Tgoi=Tgoj=Tgot for all 

i, j
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

I, i
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 2,2,...,2
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
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Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

j. By Lemma 2, the origin of system (26) is globally 

asymptotically stable.

Next, we prove that system (26) is locally homogeneous of 

degree k=2(α-1) with dilation 
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Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
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Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 
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.

Since the topology is invariant in each time interval and 

the given odd function φl(Tgo) satisfies φl(Tgo)=clTgo+o(Tgo), l=1, 

2, system (26) can be rewritten as

15 

 

             
         

   

1 2
1

1 2
1 1

sig sig sig sig

sig sig sig sig

n

i ij j i j i i i i
j

n n

ij j i i i ij j i i i
j j

i i

t a c o b c o

c a c b a o b o

f f

   

  

      

     

 



 

     

   
        
   

 



 





 (28) 

where 

 
     

       

1 2
1

1

sig sig

sig sig

n

i ij j i i i
j

n

i ij j i i i
j

f c a c b

f a o b o

 

 

   

   





  

  







. (29) 

When 1 2 ... nr r r R    , there is  
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From R R k   , one can get  1R   . When 1R  , 1   . This is the trivial dilation. 

When 2R  ,  2 1   . 

Through the above analysis,   0i t  , i I  , as t  . Then for any 0  , there is a 

constant 0 0t  , such that for all 0t t , i  . For any 0  ,  i t  is bounded for all 0t t . 

Then there is  
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Hence (28) is locally homogeneous of degree  2 1    with dilation  2,2,...,2
n


. That is, system 

(26) is locally homogeneous of degree  2 1 0     with dilation  2,2,...,2
n


. 

(28)

where
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Hence (28) is locally homogeneous of degree  2 1    with dilation  2,2,...,2
n


. That is, system 

(26) is locally homogeneous of degree  2 1 0     with dilation  2,2,...,2
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. 

, (29)

When r1=r2=...=rn=R, there is 
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Hence (28) is locally homogeneous of degree  2 1    with dilation  2,2,...,2
n


. That is, system 

(26) is locally homogeneous of degree  2 1 0     with dilation  2,2,...,2
n


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(30)

From εαR=εR+k, one can get κ=R(α-1). When R=1, κ=α-1. This 
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Through the above analysis, 
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Hence (28) is locally homogeneous of degree  2 1    with dilation  2,2,...,2
n


. That is, system 

(26) is locally homogeneous of degree  2 1 0     with dilation  2,2,...,2
n


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Hence (28) is locally homogeneous of degree  2 1    with dilation  2,2,...,2
n


. That is, system 

(26) is locally homogeneous of degree  2 1 0     with dilation  2,2,...,2
n


. 

. 

Then for any ζ>0, there is a constant t0>0, such that for all t ≥t0,  

|δi|<ζ. For any ζi(t), ζ>0 is bounded for all t ≥t0. Then there is 

15 

 

             
         

   

1 2
1

1 2
1 1

sig sig sig sig

sig sig sig sig

n

i ij j i j i i i i
j

n n

ij j i i i ij j i i i
j j

i i

t a c o b c o

c a c b a o b o

f f

   

  

      

     

 



 

     

   
        
   

 



 





 (28) 

where 

 
     

       

1 2
1

1

sig sig

sig sig

n

i ij j i i i
j

n

i ij j i i i
j

f c a c b

f a o b o

 

 

   

   





  

  







. (29) 

When 1 2 ... nr r r R    , there is  

 

     

   

   

1 2
1 2 1 2

1

1 2
1

, ,..., sig sig

sig sig

,

jn i i

n
rr r rr r

i n ij j i i i
j

n
R

ij j i i i
j

R R k
i i

f c a c b

c a c b

f f i I

 

 



           

   

   







  

 
   

 
   







 

. (30) 

From R R k   , one can get  1R   . When 1R  , 1   . This is the trivial dilation. 

When 2R  ,  2 1   . 

Through the above analysis,   0i t  , i I  , as t  . Then for any 0  , there is a 

constant 0 0t  , such that for all 0t t , i  . For any 0  ,  i t  is bounded for all 0t t . 

Then there is  

 

       

     

1 2
1 2 1

0 0

1

0

sig sig, ,...,
lim lim

sig sig
lim

0,

j i i
n

i i

n
r r r

rr r ij j i i i
i n j

k r k r

n
R R

ij j i i i
j

k R

i

a o b of

a o b o

I

 

 

  



          

 

    




  




 


 


  




. (31) 

Hence (28) is locally homogeneous of degree  2 1    with dilation  2,2,...,2
n


. That is, system 

(26) is locally homogeneous of degree  2 1 0     with dilation  2,2,...,2
n


. 

(31)

Hence (28) is locally homogeneous of degree κ=2(α-1) 

with dilation 
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  1, , 0,1,2,..., ,km r km rt t t k m i I     . (25) 
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  1, , 0,1,2,..., ,km r km rt t t k m i I     . (26) 

Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 

function 1  satisfies    0 0go go goT T T    , and    l go l go goT c T o T    around 0goT   for 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

. That is, system (26) is locally 

homogeneous of degree κ=2(α-1)<0 with dilation 
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Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

Similarly, under protocol 
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System (22) is locally homogeneous of the degree  2 1 0     with dilation  2,2,...,2
n


. 

Combining with the analys is above, one can get system (26) is globally asymptotically stable and 

locally homogeneous of the degree  2 1 0k     with dilation  2,2,...,2
n


. By lemma 3, system 

(26) is locally finite time stable. Thus the origin of (26) is globally finite time stable, because if the 

equilibrium of a nonlinear system is globally asymptotically stable and locally finite time convergent, 

then it is globally finite time stable. Therefore,  0goi golT T i I     in finite time can be achieved. 

Theorem 1 is proved. 

Note that in the process of terminal cooperative guidance, as the angle between the LOS direction 

and the axial direction of flight vehicle body is not zero, so different angles of attack can be obtained 

by adjusting their attitude, and the acceleration along the LOS can be provided by the aerodynamic 

fins. Furthermore, due to the air resistance and gravity, the acceleration along the LOS is not zero for 

the flight vehicle under the combined effect. 

Another important technology of designing cooperative guidance law is to guarantee LOS angular 

rates converge to zero, resulting in hitting the target. 

Design a finite time guidance law 
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        , const . 2N    (33) 

where N  is the effective navigation ratio,  and  are real numbers, 0  and 0 1  . 

A theorem is described as follows for guidance law. 

Theorem 2 In the process of terminal cooperative guidance, LOS angular rates converge to zero is 

achieved under the guidance law (33) described above. The bigger   value is, the faster the 

convergence rate can be. And the bigger  value is, the faster of the convergence rate can be. The 
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System (22) is locally homogeneous of the degree 

κ=2(α-1)<0 with dilation 
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  1, , 0,1,2,..., ,km r km rt t t k m i I     . (25) 

Let i goi golT T   , (25)can be rewritten as 

         1 2
1

ˆ sig sig ,
n

i i ij j i i i
j

u a t b t
      



     

  1, , 0,1,2,..., ,km r km rt t t k m i I     . (26) 

Theorem 1. Suppose that communication topology of followers is undirected, and the system 

topology with leader is connected. Then under protocol (25) with 0 1  , the continuous odd 

function 1  satisfies    0 0go go goT T T    , and    l go l go goT c T o T    around 0goT   for 

some constant 0, 1,2lc l  , so the leader-following finite time consensus can be achieved. 

Proof. Take the Lyapunov function candidate 2
1

1
2

n
ii

V 


  .Since the connection weight  ija t  

and  ib t  are invariant in each time interval  1,km r km rt t   , along the trajectory of system (26), 
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. (27) 

Since the communication topology is connected in each interval  1,km r km rt t   , 

0,1,2,..., 1,..., ,k r m   there is at least one  1,2,...,r m  such that   0ib t   or j I  such that 

  0ija t   for any i I . Then V =0 if and only if 0i j   , i.e., goi goj golT T T   for all , ,i j I

i j . By Lemma 2, the origin of system (26) is globally asymptotically stable. 

Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation

 2,2,...,2
n


. 

Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

.
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Next, we prove that system (26) is locally homogeneous of degree  2 1k    with dilation
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Since the topology is invariant in each time interval and the given odd function  l goT  satisfies 

    , 1,2l go l go goT c T o T l    , system (26) can be rewritten as 

. By lemma 

3, system (26) is locally finite time stable. Thus the origin of 

(26) is globally finite time stable, because if the equilibrium 

of a nonlinear system is globally asymptotically stable and 

locally finite time convergent, then it is globally finite time 

stable. Therefore, 
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System (22) is locally homogeneous of the degree  2 1 0     with dilation  2,2,...,2
n


. 

Combining with the analys is above, one can get system (26) is globally asymptotically stable and 

locally homogeneous of the degree  2 1 0k     with dilation  2,2,...,2
n


. By lemma 3, system 

(26) is locally finite time stable. Thus the origin of (26) is globally finite time stable, because if the 

equilibrium of a nonlinear system is globally asymptotically stable and locally finite time convergent, 

then it is globally finite time stable. Therefore,  0goi golT T i I     in finite time can be achieved. 

Theorem 1 is proved. 

Note that in the process of terminal cooperative guidance, as the angle between the LOS direction 

and the axial direction of flight vehicle body is not zero, so different angles of attack can be obtained 

by adjusting their attitude, and the acceleration along the LOS can be provided by the aerodynamic 

fins. Furthermore, due to the air resistance and gravity, the acceleration along the LOS is not zero for 

the flight vehicle under the combined effect. 

Another important technology of designing cooperative guidance law is to guarantee LOS angular 

rates converge to zero, resulting in hitting the target. 

Design a finite time guidance law 
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where N  is the effective navigation ratio,  and  are real numbers, 0  and 0 1  . 

A theorem is described as follows for guidance law. 

Theorem 2 In the process of terminal cooperative guidance, LOS angular rates converge to zero is 

achieved under the guidance law (33) described above. The bigger   value is, the faster the 

convergence rate can be. And the bigger  value is, the faster of the convergence rate can be. The 

 in finite time can be 

achieved. Theorem 1 is proved.

Note that in the process of terminal cooperative guidance, 

as the angle between the LOS direction and the axial 

direction of flight vehicle body is not zero, so different 

angles of attack can be obtained by adjusting their attitude, 

and the acceleration along the LOS can be provided by the 

aerodynamic fins. Furthermore, due to the air resistance and 

gravity, the acceleration along the LOS is not zero for the 

flight vehicle under the combined effect.

Another important technology of designing cooperative 

guidance law is to guarantee LOS angular rates converge to 

zero, resulting in hitting the target.

Design a finite time guidance law
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where N  is the effective navigation ratio,  and  are real numbers, 0  and 0 1  . 

A theorem is described as follows for guidance law. 

Theorem 2 In the process of terminal cooperative guidance, LOS angular rates converge to zero is 

achieved under the guidance law (33) described above. The bigger   value is, the faster the 

convergence rate can be. And the bigger  value is, the faster of the convergence rate can be. The 

, (33)

where N is the effective navigation ratio, β and η are real 

numbers, β>0 and 0<η<1.

A theorem is described as follows for guidance law.

Theorem 2 In the process of terminal cooperative 

guidance, LOS angular rates converge to zero is achieved 

under the guidance law (33) described above. The bigger 

β value is, the faster the convergence rate can be. And the 

bigger η value is, the faster of the convergence rate can be. 

The reasonable value range of η is 0≤η<1.

Proof: substitute the finite time guidance law into the 

following flight vehicle-target relative kinematics equation
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reasonable value range of   is 0 1  . 

Proof: substitute the finite time guidance law into the following flight vehicle-target relative 

kinematics equation 

  
     

2 1 1
D D

R t
u w

R t R t R t     


  , (34) 

so 

    
   

sgn2 D D
D D

N R t
R t R t


  

 


 
 

  , (35) 

and 

 
 

 
   

       
   2 2sgn 22

0D D
D D D D

N R tN R t
R t R t R t


  

   
       
 
 

  
    . (36) 

Select a smooth and positive definite function 

 2

1 DV   . 

In the process of terminal cooperative guidance, there are 

   0R t  ,    0 0 0R t R t   ， . (37) 

Taking the derivative of 1V , and combining with (36) and (37), one can get 

 
   

1 1
2 2

1 1 1
2 2 , 0

0
V V V t

R t R

    
    . (38) 

It can be noticed from lemma 1 that LOS angular rate D could converge to zero in finite time rt , 

and rt  satisfies 

 
   
 

1
0 0

1
D

r

R
t




 







. (39) 

One can find that the bigger  value is, the faster convergence rate can be obtained. Obviously, if 

the guidance system is controllable, initial LOS angular rate satisfies 

    0 1 rad sx � . (40) 

, (34)

so
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system is controllable, initial LOS angular rate satisfies

17 

reasonable value range of   is 0 1  . 

Proof: substitute the finite time guidance law into the following flight vehicle-target relative 

kinematics equation 

  
     

2 1 1
D D

R t
u w

R t R t R t     


  , (34) 

so 

    
   

sgn2 D D
D D

N R t
R t R t


  

 


 
 

  , (35) 

and 

 
 

 
   

       
   2 2sgn 22

0D D
D D D D

N R tN R t
R t R t R t


  

   
       
 
 

  
    . (36) 

Select a smooth and positive definite function 

 2

1 DV   . 

In the process of terminal cooperative guidance, there are 

   0R t  ,    0 0 0R t R t   ， . (37) 

Taking the derivative of 1V , and combining with (36) and (37), one can get 

 
   

1 1
2 2

1 1 1
2 2 , 0

0
V V V t

R t R

    
    . (38) 

It can be noticed from lemma 1 that LOS angular rate D could converge to zero in finite time rt , 

and rt  satisfies 

 
   
 

1
0 0

1
D

r

R
t




 







. (39) 

One can find that the bigger  value is, the faster convergence rate can be obtained. Obviously, if 

the guidance system is controllable, initial LOS angular rate satisfies 

    0 1 rad sx � . (40) . (40)

So the bigger η value is, the faster convergence rate can be 

obtained. Theorem 2 is proved.

6. Simulation Results and Analysis

The cooperative attack of three flight vehicles is 

investigated in this paper. The three flight vehicles have 

different roles, one leader and two followers. Followers 

attack the target under the guide of the leader, and the 

followers can communicate with the leader and each other 

mutually. Four instances are considered to test the designed 

cooperative strategy.

At the initial moment, the state parameters of flight vehicles 

are given in Table 1,and the following four cooperative 

attack conditions are selected to test the effectiveness of the 

proposed cooperative guidance algorithm:

Instance 1: the target is stationary, vt=0m/s;

Instance2: the target moving at a slow speed, vt=30m/s;

Instance3: the target moving at a quicker speed, vt=60m/s;

Instance4: ‌�the target moving with a sinusoidal speed, 

vt=30sin(t)m/s;

Simulation results were carried out using the proposed 

cooperative guidance law based on the consensus theory 

and the finite time control technology. Fig. 4-7 and Table 2 

show the simulation results for Instance 1-4.

Figure 4-7 shows the simulation results of Instance 1-4, 

respectively. Fig.(a) shows the trajectories of flight vehicles, 

Fig.(b) shows the control command normal to LOS, uλi, 

which is controlled to guarantee LOS angular rates converge 

to zero. Fig. (c) shows the distance between flight vehicles 

and target, Ri. Fig.(d) shows the velocity of the three flight 

vehicles, vi. Fig.(e) shows the time-to-go of three flight 

vehicles, Tgoi.

<<

Table 2. Simulation results of Instance 1-4

18 

So the bigger  value is, the faster convergence rate can be obtained. Theorem 2 is proved. 

6. Simulation Results and Analysis 

The cooperative attack of three flight vehicles is investigated in this paper. The three flight vehicles 

have different roles, one leader and two followers. Followers attack the target under the guide of the 

leader, and the followers can communicate with the leader and each other mutually. Four instances 

are considered to test the designed cooperative strategy. 

Table 1. Initial Parameters of Flight Vehicles 

Flight vehicle       position/m       head angle/(°)   velocity/(m·s-1) 
Leader          (-10504,-12000)           35             300 
Follower1       (-12100,-10100)           40             300 
Follower2       (-13000,-8100)            55             300 

At the initial moment, the state parameters of flight vehicles are given in Table 1,and the following 

four cooperative attack conditions are selected to test the effectiveness of the proposed cooperative 

guidance algorithm: 

Instance 1: the target is stationary, 0m stv  ; 

Instance2: the target moving at a slow speed, 30 m stv  ; 

Instance3: the target moving at a quicker speed, 60 m stv  ; 

Instance4: the target moving with a sinusoidal speed, 30sin( ) m stv t ; 

Simulation results were carried out using the proposed cooperative guidance law based on the 

consensus theory and the finite time control technology. Figure4-7 and Table 2 show the simulation 

results for Instance 1-4. 

Table 2 Simulation results of Instance 1-4 

Maneuver type Vehicle Impact time Miss distance 

Static Leader 
Follower 1 
Follower 2 

46.27s 
46.27s 
46.27s 

0.0710m 
0.0675m 
0.0623m 

Slow speed Leader 
Follower1 
Follower 2 

43.10s 
43.09s 
43.09s 

0.0120m 
0.2750m 
0.0322m 

High speed Leader 
Follower1 
Follower 2 

40.52s 
40.48s 
40.45s 

0.0313m 
0.0712m 
0.0334m 
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Sinusoid Leader 
Follower1 
Follower 2 

40.51s 
40.47s 
40.43s 

0.0137m 
0.0813m 
0.0265m 

Figure4-7shows the simulation results of Instance 1-4, respectively. Fig.(a) shows the 

trajectories of flight vehicles, Fig.(b) shows the control command normal to LOS, iu , which is 

controlled to guarantee LOS angular rates converge to zero. Fig. (c) shows the distance between 

flight vehicles and target, iR . Fig.(d) shows the velocity of the three flight vehicles, iv . Fig.(e) shows 

the time-to-go of three flight vehicles, goiT . 

In Instance 1, suppose the target is a stationary point with position  4000,0 , the designed 

cooperative guidance law is adopted. Three vehicles launched from different positions will arrive at 

the target at different time without the control of impact time, which will lead to failure of the combat 

mission. Instead, they can communicate mutually by the topology, then salvo attack is achieved by 

adjusting the cooperative guidance command in real time. From the results, it can be observed from 

Fig.(b) that all control commands iu could converge to zero in the final phase, thus all of the flight 

vehicles could hit the target. As shown in Fig.(c), it can be seen that the distances to the target are 

different at the initial moment. The leader is the farthest to the target, and two followers are closer to 

the target than the leader. The distance to the target of the three flight vehicles can tend to zero at the 

same time under control of the cooperative guidance law, which means that the three flight vehicles 

can hit the target simultaneously, and the guidance time is 47.01s. Therefore, the time-to-go consensus 

is realized by velocity changes of flight vehicle. Fig.(d) shows all the initial velocities of three flight 

vehicles are 300m/s , the velocity of the leader is invariable since the state of the leader is 

independent of the ones of followers. Two followers are closer to the target as shown in Fig. (c), so 

they decrease their velocity through the control command along LOS to wait the leader, such that all 

the flight vehicles can attack the target simultaneously, obviously. Fig.(e) further verifies this 

conclusion. It can be seen from Fig. (d) that the three curves become flat after the prophase adjusting, 

which indicates the demand is satisfied. Through adjusting the time-to-go of followers under control 

of the consensus protocol, the curve of followers can overlap with the ones of leader at around 3s as 
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In Instance 1, suppose the target is a stationary point 

with position  , the designed cooperative guidance law is 

adopted. Three vehicles launched from different positions 

will arrive at the target at different time without the 

control of impact time, which will lead to failure of the 

combat mission. Instead, they can communicate mutually 

by the topology, then salvo attack is achieved by adjusting 

the cooperative guidance command in real time. From 

the results, it can be observed from Fig.(b) that all control 

commands  could converge to zero in the final phase, thus 

all of the flight vehicles could hit the target. As shown in 

Fig.(c), it can be seen that the distances to the target are 

different at the initial moment. The leader is the farthest 

to the target, and two followers are closer to the target 

than the leader. The distance to the target of the three 

flight vehicles can tend to zero at the same time under 

control of the cooperative guidance law, which means that 

the three flight vehicles can hit the target simultaneously, 

and the guidance time is 47.01s. Therefore, the time-to-go 

consensus is realized by velocity changes of flight vehicle. 

Fig.(d) shows all the initial velocities of three flight 

vehicles are uλi, the velocity of the leader is invariable 

since the state of the leader is independent of the ones of 

followers. Two followers are closer to the target as shown 

in Fig. (c), so they decrease their velocity through the 

control command along LOS to wait the leader, such that 

all the flight vehicles can attack the target simultaneously, 

obviously. Fig.(e) further verifies this conclusion. It can be 
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shown in Fig.(e), which indicates the time-to-go of three flight vehicles could reach agreement. 

Instance 1: stationary target 
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Fig. 4. Simulation results for Instance 1
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seen from Fig. (d) that the three curves become flat after 

the prophase adjusting, which indicates the demand is 

satisfied. Through adjusting the time-to-go of followers 

under control of the consensus protocol, the curve of 

followers can overlap with the ones of leader at around 

3s as shown in Fig.(e), which indicates the time-to-go of 

three flight vehicles could reach agreement.

Instance 1: stationary target
In Instance 2-4, the intercept for the incoming target 

with different velocities was investigatedusing the 

designed cooperative guidance law. Fig.(a) shows the 

trajectories of flight vehicles during intercepting the 

incoming target. Similarly, three flight vehicles launched 

from different positions and directions, and they can 

intercept the incoming target simultaneously under the 

proposed cooperative guidance law. For the simulation 

results of intercepting the incoming target, Fig.(b) shows 

the control command normal to LOS, Fig. (c) shows the 

distance between flight vehicle and target, Fig. (d) shows 

the velocity of three flight vehicles, Fig.(e) shows the time-

to-go of three flight vehicles. Commonly, as the velocity of 

flight vehicles is bigger than the ones of the target, the LOS 

angular rates become stable around zero means the flight 

vehicle could hit the target. From Instance 2-4 in Fig.(b), 

it can be observed that all the control commands could 

converge to zero in the final phase, which guarantees the 

three flight vehicles could hit the target. Where, the control 

command comes to zero in the final phase when the 

velocity of the target is 30m/s. When the velocity increases 

to 60m/s, the control command has slight fluctuations in 

the final phase, and the control command shows a sine 

curve when the velocity of the target changes sinusoidally. 
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intercepting a moving target, but the consensus time is longer than the instance of stationary target. 

Instance 2: moving target 

Three flight vehicles cooperative intercept of a moving target with the flight velocity 30m s . 
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Fig. 5. Simulation results for Instance 2
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It can be seen from Fig.(c) that the distances to the target 

of the three flight vehicles could come to zero at the same 

time, which indicates that the consensus of leader-follower 

multi-vehicle system is achieved. Furthermore, the 

intercept time will be shorter as the velocity of the target 

increases. Therefore, the designed cooperative guidance 

method is also effective for intercepting a moving target. 

Fig.(d) shows the velocity of the leader is also constant, 

and followers could adjust their velocities such that the 

state of the system can reach agreement. The velocity of 

flight vehicles is controlled by command along to LOS. But 

the velocity curves of followers no longer tend to flat, they 

change continuously as the target is moving. As the velocity 

of the target increases, the amplitude value of the vehicle 

velocity is bigger. It can be seen that the time-to-go could 

reach agreement when the target is moving as shown in 

Fig.(e), the time-to-go curves of followers tend to the ones 

of the leader at around 4.5s in Instance 2-4, it takes longer 

time to reach agreement compared to the stationary target 

attack. From the simulation results, it can be concluded 

that the designed cooperative guidance law based on finite 

time consensus theory is effective for intercepting a moving 

target, but the consensus time is longer than the instance of 

stationary target.

Instance 2: moving target
Three flight vehicles cooperative intercept of a moving 

target with the flight velocity 30m/s.

Instance 3: moving target at a quicker speed
Instance 4: moving target with velocity changes at 

sinusoid law
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Fig. 5. Simulation results for Instance 2 

Instance 3: moving target at a quicker speed 
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7. Conclusion

A cooperative guidance strategy in salvo attack for leader-

follower multi-vehicle system is proposed in this paper. The 

consensus protocol of leader-follower multi-vehicle system 

is designed by the finite time consensus theory, therefore, the 

time-to-go of flight vehicles can reach agreement, and the 

finite time stability of the system is analyzed. Meanwhile, a 

finite time guidance law is designed by the finite time control 

technology, so the LOS angular rates can converge to zero. 

The consensus problem is resolved by the proposed method, 

thus guarantee MFV hit the target simultaneously. It can 

be concluded that the finite time control theory has a great 

advantage in consensus problem of MFV. Salvo attack can be 

achieved by the proposed approach, but the consensus time 

is longer for intercepting a moving target compared to the 

stationary target instance.

There are some future studies related to this work. One 

interesting study is the consensus protocol considering topology 

transformation and communication delay. In addition, how to 

design a reasonable estimation method to estimate the target 

states in cooperative guidance is also worth researching.
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