DOI QR코드

DOI QR Code

Design of Control System for Organic Flight Array based on Back-stepping Controller

Backstepping 기법을 이용한 유기적 비행 어레이의 제어시스템 설계

  • Oh, Bokyoung (Agency for Defense Development) ;
  • Jeong, Junho (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2016.08.23
  • Accepted : 2017.08.27
  • Published : 2017.09.01

Abstract

This paper proposes a flight control system for an organic flight array(OFA) which has a new configuration to consist of multi modularized ducted-fan unmanned aerial vehicles (UAVs). The OFA is able to apply to various missions such as indoor reconnaissance, communication relay, and radar jamming by using capability of hover flight. The OFA has a distinguished advantage due to reconfigurable structure to assemble or separate with respect to its missions or operational conditions. A dynamic modelling of the OFA is derived based on equations of motion of the single ducted-fan modules. In order to apply nonlinear control method, an affine system of attitude dynamics is derived. Moreover, the control system is composed of a back-stepping controller for attitude control and a PID controller for position control. Then the performance of the proposed controller is verified via a numerical simulation under wind disturbance.

본 연구에서는 재형상 특성을 지닌 유기적 비행 어레이의 비행 제어 시스템 설계에 대한 내용을 제안하였다. 단일 덕티드팬의 결합과 분리를 기반으로 구성되는 유기적 비행어레이는 주어진 임무나 주변 상황에 대해 유기적으로 어레이 형상을 변화시킬 수 있는 장점을 가진다. 이와 더불어 덕티드팬 비행체 기반이기 때문에 호버링이 가능하여 실내 정찰, 통신 중계, 레이더 재밍과 같은 미션에 유용하게 사용 된다. 비행 어레이의 동역학모델링은 단일 덕티드팬 비행체의 동역학 모델을 기반으로 구성되며, 비선형 제어기법을 적용하기 위해 어파인 형태의 동역학 식에 대한 유도를 수행한다. 비행체 자세 제어를 위해 Backstepping 제어기법을 적용하였으며 PID 제어기법을 통해 위치 제어 루프를 구현한다. 또한 수치 시뮬레이션을 통해 제안 된 제어기가 주어진 상황에서 충분한 성능을 보이는지를 검증하였다.

Keywords

References

  1. Lin, Y., Hyyppa, J., and Jaakkola, A., "Mini-UAV-borne LIDAR for fine-scale mapping," IEEE Geoscience and Remote Sensing, Vol. 8, No. 3, May. 2011, pp.426-430. https://doi.org/10.1109/LGRS.2010.2079913
  2. Huh, S., Cho, S., and Shim, D. H., "3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LiDAR," Journal of Korea Robotics Society, Vol. 9, No. 3, 2014, pp.154-159.(in Korean) https://doi.org/10.7746/jkros.2014.9.3.154
  3. Chang, J., Choi, H., Lee, S., Park, M., and Lee, C., "Development of GCS for small UAV with Automatic Tekeoff and Landing Mode," Proceedings of 2011 KSAS Fall conference, 2011, pp.1637-1641.(in Korean)
  4. http://www.yamahaprecisionagriculture.com
  5. http://www.amazon.com/b?node=8037720011
  6. Bouabdallah, S., Murrieri, p., and Siegwart, R., "Towards Autonomous Indoor Micro VTOL," Autonomous Robots, Vol. 18, No. 2, 2005, pp.171-183. https://doi.org/10.1007/s10514-005-0724-z
  7. Jung, Y., and Shim, H., "Trajectory Tracking Methodology Design using L1 adaptive control for Multirotor UAVs," Proceedings of 2013 KSAS Fall conference, 2013, pp.451-456.(in Korean)
  8. Mukherjee, P., and Waslander, S. L., "Modeling and Multivariable Control Techniques for Small Coaxial Helicopters," Proceeding of the AIAA Guidance, Navigation, and Control Conference, 2011.
  9. Johnson, Eric N., and Turbe, Michael A., "Modeling, control, and flight testing of a small-ducted fan aircraft," Journal of guidance, control, and dynamics, Vol. 29, No. 4, 2006, pp. 769-779. https://doi.org/10.2514/1.16380
  10. Ryu, M., Cho, L., and Cho, J., "Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 5, 2012, pp. 413-422.(in Korean) https://doi.org/10.5139/JKSAS.2012.40.5.413
  11. Pflimlin, J. M., Soueres, P., and Hamel, T., "Position Control of a Ducted Fan VTOL UAV in Crosswind," International Journal of Control, Vol. 80, No. 5, 2007, pp. 666-683. https://doi.org/10.1080/00207170601045034
  12. Marconi, L., and Naldi, R., "Control of aerial Robots," IEEE Control Systems, Vol. 32, No. 4, 2012, pp.43-65. https://doi.org/10.1109/MCS.2012.2194841
  13. Oung, R., and D'Andrea, R., "The Distributed Flight Array," Mechatronics, Vol. 21, No. 6, 2011, pp.908-917. https://doi.org/10.1016/j.mechatronics.2010.08.003
  14. Abedin, J., and Akmeliawati, R., "Distributed Flight Array of Autonomous Flying Vehicles," Proceedings of International Conference on Intelligent Unmanned Systems, Vol. 11, 2015.
  15. Jeong, J., Oh, B., Kim, S., Suk, J., and Hong, J., "Dynamic Modeling and Controller Design for Organic Flight Array," Proceedings of 2015 KSAS Spring conference, 2015, pp.700-703.(in Korean)
  16. Jeong, J., Kim, S., and Suk, J., "Control System Design for a Ducted-Fan Unmanned Aerial Vehicle Using Linear Quadratic Tracker," International Journal of Aerospace Engineering, 2015.
  17. Shtessel, Y., Buffington, J., and Banda, S., "Multiple Timescale Flight Control using Reconfigurable Sliding Modes," Journal of Guidance, Control, and Dynamics, Vol. 22, No. 6, 1999, pp. 873-883. https://doi.org/10.2514/2.4465
  18. Kim, S., Tsourdos, A., and White, B. A., "Nonlinear Flight Control Systems," Encyclopedia of Aerospace Engineering, 2010.
  19. Oh, B., "Design of Control System for Organic Flight Array based on Neural Network Controller," Master's Thesis, Department of Aerospace Engineering, Chungnam National University, Daejeon, Republic of Korea, 2014.