DOI QR코드

DOI QR Code

광합성세균 Rhodopseudomonas palustis 분리 및 IAA와 Carotenoid 생성에 관한 연구

Isolation of Photosynthetic Bacterium, Rhodopseudomonas palustris JK-1 and Researches on IAA and Carotenoid Production

  • 김유경 (제주특별자치도농업기술원 친환경연구과) ;
  • 조영윤 (제주특별자치도농업기술원 친환경연구과) ;
  • 강호준 (제주특별자치도농업기술원 친환경연구과) ;
  • 김정선 (제주특별자치도농업기술원 친환경연구과) ;
  • 양성년 (제주특별자치도농업기술원 친환경연구과) ;
  • 좌창숙 (제주특별자치도농업기술원 친환경연구과)
  • 투고 : 2017.09.08
  • 심사 : 2017.11.01
  • 발행 : 2017.11.30

초록

본 연구에서는 제주도 한라산 중산간 습지대 28개소에서 IAA 및 carotenoid 생성능이 우수한 광합성 세균 1종을 최종 선발하였으며, 16S rRNA 염기서열 분석과 생리학적 특성을 조사한 결과 Rhodopseudomonas palustris JK-1 균주로 동정하였다. JK-1 균주의 최적배양조건을 선발하기 위하여 pH, 온도, 빛 및 통기 등을 포함한 여러 가지 요인들이 균주의 생장과 IAA 및 carotenoid 등 광합성색소 생성에 미치는 영향을 조사하였다. 시험결과 JK-1 균주는 명/혐기조건에서 균생장, IAA 및 광합성색소 생성이 양호하였으며 암/혐기조건에서 균생장, IAA 및 광합성색소 형성이 모두 크게 억제되었다. 명/혐기조건에서 균생장, IAA 및 carotenoid 등 광합성색소의 생산을 위한 최적 pH, 온도 및 배양회전속도는 각각 7, $30^{\circ}C$, 150 rpm, 9, $30^{\circ}C$ 및 150 rpm, 그리고 6, $25^{\circ}C$ 및 50 rpm이었다. 그리고 명/호기조건(0.5~1 vvm)에서는 명/혐기조건(0 vvm)보다 균생장 및 IAA 합성이 양호하였으나 광합성색소 형성은 크게 억제되었다. 따라서 최적배양조건은 명/혐기조건에서 pH 7, 온도 $30^{\circ}C$ 및 회전속도 100 rpm을 선발하였으며, IAA 합성을 유도한 배양액을 생육촉진 효과검증에 이용하였다. 시험결과 R. palustris JK-1 균주를 열무에 3% (v/v) 처리 시 지상부 및 지하부 건물중이 무처리 및 배지처리구 대비 각각 20~58% 및 40-28% 증가하였다.

The JK-1 isolate which was the best producer of indole-3-acetic acid and carotenoid among the 388 strains isolated from 28 wetlands in Jeju, was identified to be Rhodopseudomonas palustirs belongs to a typical group of non sulfur purple bacteria based on 16S sRNA sequencing. This study investigated the effect of different cultural conditions of pH, temperature, agitation, light and aeration on growth, IAA and carotenoid production of photosynthetic bacterium JK-1 for optimization of IAA and carotenoid production. It was found that growth, IAA, carotenoid, and bacteriochlorophyll production with light (3,000~3,500 Lux) and agitation (100 rpm) showed better results than those with dark/static or dark/agitation (100 rpm) in anaerobic conditions. The optimal pH, temperature and agitation speed for cell growth were 7, $30^{\circ}C$, 150 rpm, for IAA production were 9, $30^{\circ}C$, 150rpm and for carotenoid production were 6, $25^{\circ}C$, 50 rpm, cultured for 72 h under anaerobic light, respectively. The growth and IAA production were high in aerobic culture compared with anaerocic culture, whereas carotenoid and bacteriochlorophyll content were decreased extremely in aerobic condition (0.5~1 vvm). Subsequently, the optimal culture conditions for JK-1 were selected with pH 7, $30^{\circ}C$ and 100 rpm under anaerobic light and the effect on plant growth was tested by pot assay. Inoculation of JK-1 with 3% (v/v) level caused increase in shoot and root dry weigh that varied from 20%~58% to 40%~28% in young radish in camparison to uninoculated treatment at 50 days of growth. The study suggests that the JK-1 isolate may serve as efficient biofertilizer inoculants to promote plant growth.

키워드

참고문헌

  1. Alberto, A. V., E. A. Wider, and A. M. C. Batlle. 1987. Porphyrin biosynthesis in Rhodopseudomonas palustris-XII. ${\delta}$-aminolevulinate synthetase switch-off/on regulation. Int. J. Biochem. 19(4): 379-383. https://doi.org/10.1016/0020-711X(87)90012-7
  2. Apine, O. A. and J. P. Jadhav. 2011. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110(5): 1235-1244. https://doi.org/10.1111/j.1365-2672.2011.04976.x
  3. Bong, K. M. K. M. Kim, M. K. Seo, J. H. Han, I. C. Park, C. W. Lee, and P. I. Kim. 2017. Optimization of medium for the carotenoid production by Rhodobacter sphaeroides PS-24 using response surface methodology. Korean J. Org. Agric. 25(1): 135-148. https://doi.org/10.11625/KJOA.2017.25.1.135
  4. Dobbelaere, S., A. Croonenborghs, A. Thys, B. A. Vande, and J. Vanderleyden. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 212: 155-164.
  5. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
  6. Holt, G. J., N. R. Krieg, P. H. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's manual of determinative bacteriology. 9th ed., Williams and Wilkins Co. Baltmore: 787.
  7. Jensen, S. L. and A. Jensen. 1971. Quantitative determination of carotenoids in photosynthetic tissues. Methods Enzymol. 23: 586-602.
  8. Kim, J. K. and B. K. Lee. 2000. Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aqua. Eng. 23: 281-293. https://doi.org/10.1016/S0144-8609(00)00057-1
  9. Kim, K. S. and H. S. Lee. 1976. Studies on Rhodopseudomonas palustris in Korea. Kor. J. Microbiol. 14(4): 167-175.
  10. Koh, R. H. and H. G. Song. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17(11); 1805-1810.
  11. Kuo, F. S., Y. H. Chien, and C. J. Chen. 2012. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresource Tech. 113: 315-318. https://doi.org/10.1016/j.biortech.2012.01.087
  12. Lambrecht, M., Y. Okon, A. V. Broek, and J. Vanerleyden. 2000. Indole-3-acetic acid : a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8(7): 298-300. https://doi.org/10.1016/S0966-842X(00)01732-7
  13. Larimer, F. W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood. 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature biotechnology. 22(1): 55-61. https://doi.org/10.1038/nbt923
  14. Lee, E. S. and H. G. Song. 2010. Plant growth promotiom by purple nonsulfur Rhodopseudomonas faecalis strains. Kor. J Microbiol. 46(2): 157-161.
  15. Lee, K. W. 1971. General characters and applications of photosynthetic bacteria. Kor. J. Microbiol. 9: 130-138.
  16. Lee, S. K., H. S. Lur, K. J. Lo, K. C. Cheng, C. C. Chuang, S. J. Tang, Z. W. Yang, and C. T. Liu. 2016. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Applied Microbiol & Biotech. 100(18): 7977-7987. https://doi.org/10.1007/s00253-016-7582-9
  17. Lee, S. S., H. J. Joo, S. C. Lee, M. Jang, T. K. Lee, H. J. Shim, and E. B. Shin. 2002. Development of advanced wastewater treatment system using photosynthetic purple nonsulfur bacteria. Kor. J. Microbiol. Biotechnol. 30(2): 189-197.
  18. Li, F. Z., X. Y. Zhou, X. X. Zeng, and J. Deng. 2008. Identification of a strain of Rhodopseudomonas palustris and researches on its carotenoid production. J. Food Sci. & Biotech. 27(4): 116-121.
  19. Liu, C. T., W. T. Wong, C. H. Tseng, S. H. Hsu, H. S. Lur, C. W. Mo, C. N. Huang, S. C. Hsu, and S. C. Hsu. 2014. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes Environ. 29(3): 303-313. https://doi.org/10.1264/jsme2.ME14056
  20. Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13(5): 1-11.
  21. Murtaugh, M. A., K. N. Ma, J. Benson, K. Curtin, B. Can, and M. L. Slattery. 2004. Antioxidants, carotenoids, and risk of rectal cancer. Am. J. Epidemiol. 159: 32-41. https://doi.org/10.1093/aje/kwh013
  22. Naghavi, F. S., P. Hanachi, and A. Saboora. 2014. Effect of temperature, pH and salinity on carotenoid production in Rodotorula mucilaginosa. Research in Biotech. 5(4): 01-04.
  23. Nunkaew, T., D. Kantachote, H. Kanzaki, T. Nitoda, and R. J. Richie. 2014. Effect of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electronic J. Biotech. 17: 19-26. https://doi.org/10.1016/j.ejbt.2013.12.004
  24. Pechter, K. B., L. Gallagher, H. Pyles, C. S. Manoil, and C. S. Harwood. 2016. Essential genome of the metabolically versatile alphaproteobacterium Rhodopseudomonas palustris. J. of Bacteriology. 198(5): 867-876. https://doi.org/10.1128/JB.00771-15
  25. Pierre, A. 1997. Food carotenoids and cancer prevention : An overview of current research. Trends in Food Sci. Tech. 8: 406. https://doi.org/10.1016/S0924-2244(97)01092-3
  26. Ramana, V. V., S. K. Chakravarthy, P. S. Raj, B. V. Kumar, E. Shobha, E. V. V. Ramaprasad, C. Sasikala, and Ch. V. Ramada. 2012. Description of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris. Int. J. Systematic and Evo. Microbiology. 62: 1790-1798. https://doi.org/10.1099/ijs.0.026815-0
  27. Saejung, C. and P. Apaiwong. 2015. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotech. & Biopro. Eng. 20: 701-707. https://doi.org/10.1007/s12257-015-0015-2
  28. Sakpirom, J., D. Kantachote, T. Nunkaew, and E. Khan. 2017. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology. 168: 266-275. https://doi.org/10.1016/j.resmic.2016.12.001
  29. Song, H. G. and E. S. Lee. 2010. Plant growth promotion by purple nonsulfur Rhodopseudomonas faecalis strains. Kor. J. Microbiology. 46(2): 157-161.
  30. Song, S. H. 1993. Effects of carbon sources on the growth, formation of bacteriochlorophyll and carotenoid in a photosynthetic bacterium, Rhodospirillum rubrum. Graduate school of education, Jeju National University, Jeju, Korea.
  31. Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  32. Staley, J. T. 1989. Bergey's manual of systematic bacteriology. Williams & Wikinsm Co., New York.
  33. Steenhoudt, O. and J. Vanderleyden. 2000. Azospirillum a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemiclal and ecological aspects. FEMS Microbiol. Rev. 24: 487-506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  34. Taghavi, S., C. Garafola, S. Monchy, L. Newman, and A. Hoffman. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75: 748-757. https://doi.org/10.1128/AEM.02239-08
  35. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  36. Wu, J., Y. Wang, and X. Lin. 2013. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation. PLOS ONE 8(6): 1-5.
  37. Xing, D., Y. Zuo, S. Cheng, J. M. Regan, and B. E. Logan. 2008. Electricity generation by Rhodopseomonas palustris. Environ. Sci. Tech. 42: 4146-4151. https://doi.org/10.1021/es800312v
  38. Xu, J., Y. Feng, Y. Wang, X. Luo, J. Tang, and X. Lin. 2015. The foliar spray of Rhodopseudomonas plalustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. J. Soils Sediments (doi: 10.1007/s11368-015-1269-1).
  39. Yin, Z. P. Z. W. Shang, C. Wei, J. Ren, and X. S. Song. 2012. Foliar sprays of photosynthetic bacteria improve the growth and anti-oxidative capability on chinese dwarf cherry seedlings. J. Plant Nutr. 35(6): 840-853. https://doi.org/10.1080/01904167.2012.663439
  40. Yoon, S. T., Y. O. Kim, I. S. Kim, and M. C. Lee. 2012. Effect of effective microorganism applications on growth, yield and fruit nutrient contents in Hot pepper. Kor. J. Organic Agriculture. 20(3): 313-326.