DOI QR코드

DOI QR Code

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol (Department of Mathematics Education Pusan National University) ;
  • Lee, Yang (Institute of Basic Science Daejin University) ;
  • Park, Sangwon (Department of Mathematics Dong-A University)
  • Received : 2016.05.09
  • Accepted : 2016.09.21
  • Published : 2017.11.30

Abstract

Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

Keywords

References

  1. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  2. G. Birkenmeier, J. Kim, and J. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (1999), 25-42.
  3. V. Camillo, T. Kwak, and Y. Lee, Ideal-symmetric and semiprime rings, Comm. Algebra 41 (2013), no. 12, 4504-4519. https://doi.org/10.1080/00927872.2012.705402
  4. J. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424. https://doi.org/10.1215/S0012-7094-67-03446-1
  5. P. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  6. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  7. C. Hong, N, Kim, and Y. Lee, Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), no. 6, 2030-2039. https://doi.org/10.1080/00927870802304663
  8. I. Kaplansky, Rings of Operators, Math. Lecture Note Series. New York: Benjamin, 1965.
  9. T. Kwak and Y. Lee, Reflexive property of rings, Comm. Algebra 40 (2012), no. 4, 1576-1594. https://doi.org/10.1080/00927872.2011.554474
  10. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  11. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  12. G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. https://doi.org/10.1080/00927878108822678