SOME RESULTS OF f-BIHARMONIC MAPS INTO A RIEMANNIAN MANIFOLD OF NON-POSITIVE SECTIONAL CURVATURE

GUOQING HE, JING LI, AND PEIBIAO ZHAO

ABSTRACT. The authors investigate f-biharmonic maps $u : (M, g) \to (N, h)$ from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature, and derive that if $\int_M f^p |\tau(u)|^p dv_g < \infty$, $\int_M |\tau(u)|^2 dv_g < \infty$ and $\int_M |du|^2 dv_g < \infty$, then u is harmonic. When u is an isometric immersion, the authors also get that if u satisfies some integral conditions, then it is minimal. These results give an affirmative partial answer to conjecture 4 (generalized Chen’s conjecture for f-biharmonic submanifolds).

1. Introduction

In the past several decades harmonic maps have played a central role in geometry and analysis. Let (M^m, g) and (N^n, h) be Riemannian manifolds of dimensions m, n and $u : (M^m, g) \to (N^n, h)$ be a smooth map. The energy of u is defined by $E(u) = \int_M |du|^2 dv_g$, where dv_g is the volume element on (M^m, g). Harmonic maps are the critical maps of $E(\cdot)$. The Euler-Lagrange equation of harmonic maps is $\tau(u) = 0$, where $\tau(u)$ is called the tension field of u. p-harmonic maps [19], exponentially harmonic maps [16], F-harmonic maps and f-harmonic maps are extensions to harmonic maps and many results have been carried out (for instance, see [1–3, 10, 24, 33]).

In 1983, J. Eells and L. Lemaire [13] proposed the problem to consider biharmonic maps which are critical points of the bi-energy functional $E_2(u) = \int_M |\tau(u)|^2 dv_g$. We see that biharmonic maps are a generalization of harmonic maps. In 1986, G. Y. Jiang [21] studied the first and the second variational formulas of the bi-energy. There have been many studies on biharmonic maps (for instance, see [4–6, 11, 20, 25, 26, 32]). To further generalize the notion of

Received September 24, 2016; Revised March 13, 2017; Accepted June 21, 2017.
2010 Mathematics Subject Classification. 58E20, 53C21.
Key words and phrases. f-biharmonic maps, f-biharmonic submanifolds.
This work is supported by NNSF (No.11371194) and Natural Science Foundation of the Anhui Higher Education Institutions of China (KJ2017A324).
harmonic maps, Y. B. Han and S. X. Feng [17] introduced the F-bienergy functional $E_{F,2}(u) = \int_M F(|\tau(u)|^2)\,dv_g$. The critical points of F-bienergy $E_{F,2}(u)$ are called F-biharmonic maps. If $F(u) = (2u)^2$, we have p-biharmonic functional $E_{p,2}(u) = \int_M |\tau(u)|^p\,dv_g$. If $F(u) = e^u$, we have exponential bienergy functional $E_{e,2}(u) = \int_M e^{|\tau(u)|^2}\,dv_g$.

A. Lichnerowicz [23] (see also [12]) introduced and studied f-harmonic maps between Riemannian manifolds. The study of f-harmonic maps comes from a physical motivation, since in physics f-harmonic maps can be viewed as stationary solutions to the inhomogeneous Heisenberg spin system (see [22]).

W. J. Lu [27] introduced the following functional:

$$E_{2,f}(u) = \int_M f|\tau(u)|^2\,dv_g,$$

where $f : (M, g) \to (0, +\infty)$ is a smooth function. A map u is called an f-biharmonic map if it is a critical point of the f-bienergy functional.

Recently, N. Nakauchi et al. [31] showed that every biharmonic map of a complete Riemannian manifold into a Riemannian manifold of non-positive curvature whose energy and bi-energy are finite must be harmonic. S. Maeta [29] obtained that biharmonic maps from a complete Riemannian manifold into a non-positive curved manifold with finite $(a+2)$-bienergy $\int_M |\tau(u)|^{a+2}\,dv_g < \infty$ ($a \geq 0$) and energy are harmonic. Y. B. Han and W. Zhang [18] obtained that p-biharmonic maps from a complete manifold into a non-positive curved manifold with finite $(a+p)$-bienergy $\int_M |\tau(u)|^{a+p}\,dv_g < \infty$ and energy are harmonic. In this paper, we first obtain the following results:

Theorem 1.1 (cf. Theorem 3.1). Let $u : (M^m, g) \to (N^n, h)$ be an f-biharmonic map from a compact Riemannian manifold (M^m, g) without boundary into a Riemannian manifold (N^n, h) with non-positive sectional curvature, then u is harmonic.

Theorem 1.2 (cf. Theorem 3.3). Let $u : (M^m, g) \to (N^n, h)$ be an f-biharmonic map from a complete Riemannian manifold (M^m, g) into a Riemannian manifold (N^n, h) with non-negative real constant.

(i) If

$$\int_M f^p|\tau(u)|^p\,dv_g < \infty, \quad \int_M |\tau(u)|^2\,dv_g < \infty, \quad \text{and} \quad \int_M |du|^2\,dv_g < \infty,$$

then u is harmonic.

(ii) If $Vol(M, g) = \infty$, and $\int_M f^p|\tau(u)|^p\,dv_g < \infty$, then u is harmonic.

Chen’s conjecture is the most interesting problem in the biharmonic theory. In 1988, Chen [9] raised the following problem:

Conjecture 1. Any biharmonic submanifold in E^n is minimal.
There are some affirmative partial answers to Conjecture 1.

Then Chen’s conjecture was generalized as follows ([8]): Any biharmonic submanifolds in a Riemannian manifold with non-positive sectional curvature is minimal. There are also some affirmative partial answers to this Conjecture (for instance, see [7,17,30,31]).

Motivated by Chen’s conjecture, Y. B. Han [15] proposed the following conjecture:

Conjecture 2. Any p-biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal.

Some affirmative partial answers to Conjecture 2 were proved in [15,18,28].

Y. B. Han [16] also proposed the following conjecture:

Conjecture 3. Any exponentially biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal.

Some affirmative partial answers to Conjecture 3 were proved in [16].

For f-biharmonic submanifolds, it is natural to consider the following conjecture.

Conjecture 4. Any f-biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal.

For f-biharmonic submanifolds, we obtain some results:

Theorem 1.3 (cf. Theorem 4.1). Let $u : (M,g) \to (N,h)$ be an f-biharmonic isometric immersion from a complete Riemannian manifold into a Riemannian manifold (N,h) with non-positive sectional curvature and let p, q be two real constants satisfying $2 \leq p < \infty$ and $0 < q \leq p < \infty$. If

$$\int_M f^p |\vec{H}|^q \, dv_g < \infty,$$

then u is minimal.

Theorem 1.4 (cf. Theorem 4.2). Let $u : (M,g) \to (N,h)$ be an f-biharmonic isometric immersion from a complete Riemannian manifold into a Riemannian manifold (N,h) with non-positive sectional curvature. If

$$\int_{B_r(x_0)} f^p \, dv_g \leq C_0 (1 + r)^s$$

for some positive integer s, C_0 independent of r and $p \geq 2$, then u is minimal.

Theorem 1.5 (cf. Theorem 4.3). Let $u : (M,g) \to (N,h)$ be an f-biharmonic isometric immersion from a complete Riemannian manifold into a Riemannian manifold (N,h) whose sectional curvature is smaller than $-\varepsilon$ for some constant $\varepsilon > 0$ and $\int_{B_r(x_0)} |f \vec{H}|^p \, dv_g (p \geq 2)$ is of at most polynomial growth of r. Then u is minimal.
Theorem 1.6 (cf. Theorem 4.4). Let $u : (M, g) \to (N, h)$ be a complete ε-supper f-biharmonic submanifold in (N, h) for $\varepsilon > 0$. If
\[\int_M |f\tilde{H}|^p dv_g < \infty, \]
where $p \geq 2$, then u is minimal.

2. Preliminaries

In this section we give some necessary notations and terminologies about harmonic maps, biharmonic maps, f-biharmonic maps and f-biharmonic submanifolds.

Let $u : (M^m, g) \to (N^n, h)$ be a smooth map from an m-dimensional Riemannian manifold (M^m, g) to an n-dimensional Riemannian manifold (N^n, h). The energy of u is defined by
\[E(u) = \int_M \frac{|du|^2}{2} dv_g, \]
where dv_g is the volume element on (M^m, g).

The Euler-Lagrange equation of harmonic maps is $\tau(u) = 0$ where ∇ is the Levi-Civita connection on (M^m, g) and $\tilde{\nabla}$ is the induced Levi-Civita connection of the pullback bundle $u^{-1}TN$. \{e_i\}_{i=1}^m is an orthonormal frame field on (M^m, g). If $\tau(u) = 0$, then u is called a harmonic map.

In 1983, J. Eells and L. Lemaire [13] proposed the problem to consider the bi-energy functional:
\[E_2(u) = \int_M \frac{\left|\tau(u)\right|^2}{2} dv_g. \]
Then, in 1986, G. Y. Jiang [21] obtained the first and the second variational formulas of the bi-energy functional. The Euler-Lagrange equation of the bi-energy functional is
\[\tau_2(u) = -\tilde{\Delta}(\tau(u)) - \sum_i R^N(\tau(u), du(e_i)) du(e_i) = 0, \]
where $R^N(X, Y) = [^N N \nabla_X, ^N N \nabla_Y] - ^N N \nabla_{[X,Y]}$ is the curvature operator on (N, h). If $\tau_2(u) = 0$, then u is called a biharmonic map.

To generalize the notation of biharmonic maps, W. J. Lu [27] studied the f-bienergy functional
\[E_{2,f}(u) = \int_M f(x)\left|\tau(u)\right|^2 dv_g, \]
where $f : (M, g) \to (0, +\infty)$ is a smooth function. The Euler-Lagrange equation of $E_{2,f}$ is
\[\tau_{2,f}(u) = -\tilde{\Delta}(f\tau(u)) - \sum_i R^N(f\tau(u), du(e_i)) du(e_i) = 0. \]
If \(\tau_2 f(u) = 0 \), then \(u \) is called an \(f \)-biharmonic map.

Now we briefly recall the submanifold theory. Let \(u : (M^m, g) \to (N^{m+t}, h) \) be an isometric immersion from an \(m \)-dimensional Riemannian manifold \((M^m, g)\) into an \((m + t)\)-dimensional Riemannian manifold \((N^{m+t}, h)\). The second fundamental form \(B : TM \otimes TM \to NM \) is defined by
\[
B(X, Y) = N \nabla_X Y - \nabla_X Y, \quad X, Y \in \Gamma(TM).
\]
The shape operator \(A_\xi : TM \to TM \) for a unit normal vector field \(\xi \) on \(M \) is defined by
\[
N \nabla_X \xi = -A_\xi X + \nabla_X \xi, \quad X \in \Gamma(TM), \xi \in \Gamma(T^\perp M),
\]
where \(\nabla^\perp \) denotes the normal connection on the normal bundle of \(M \) in \(N \).

It’s well known that \(B \) and \(A_\xi \) are related by
\[
\langle B(X, Y), \xi \rangle = \langle A_\xi X, Y \rangle.
\]
For any \(x \in M \), the mean curvature vector field \(\vec{H} \) of \(M \) at \(x \) is given by
\[
\vec{H} = \frac{1}{m} \sum_i B(e_i, e_i).
\]
If an isometric immersion \(u : (M, g) \to (N, h) \) is \(f \)-biharmonic, then \(M \) is called an \(f \)-biharmonic submanifold in \(N \). In this case, \(\tau(u) = m \vec{H} \). We know that \(M \) is an \(f \)-biharmonic submanifold in \(N \) if and only if
\[
(1) -\tilde{\Delta}(f \vec{H}) - \sum_i R^N(f \vec{H}, e_i)e_i = 0.
\]
From (2), we obtain the sufficient and necessary condition for \(M \) to be an \(f \)-biharmonic submanifold in \(N \) as follows:
\[
(2) \quad \triangle^\perp (f \vec{H}) - \sum_i B(e_i, A_f \vec{H} e_i) + \left[\sum_i R^N(f \vec{H}, e_i)e_i \right]^\perp = 0,
\]
\[
(3) \quad Tr_g(\nabla(\cdot) A_f \vec{H}(\cdot)) + Tr_g[A_{\nabla^\perp (f \vec{H})}(\cdot)] - \left[\sum_i R^N(f \vec{H}, e_i)e_i \right]^\perp = 0.
\]
We also need the following lemma.

Lemma 2.1. (Gaffney [14]). Let \((M, g)\) be a complete Riemannian manifold. If a \(C^1 \) 1-form \(\alpha \) satisfies that \(\int_M |\alpha| dv_g < \infty \) and \(\int_M (\delta \alpha) dv_g < \infty \), or equivalently, a \(C^1 \) vector \(X \) defined by \(\alpha(Y) = \langle X, Y \rangle \) satisfies that \(\int_M |X| dv_g < \infty \) and \(\int_M \text{div}(X) dv_g < \infty \), then \(\int_M (\delta \alpha) dv_g = \int_M \text{div}(X) dv_g = 0 \).

3. \(f \)-biharmonic maps in a Riemannian manifold of non-positive sectional curvature

In this section, we obtain some results as follows:

Theorem 3.1. Let \(u : (M^m, g) \to (N^n, h) \) be an \(f \)-biharmonic map from a compact Riemannian manifold \((M^m, g)\) without boundary into a Riemannian manifold \((N^n, h)\) with non-positive sectional curvature, then \(u \) is harmonic.
Proof. From (1), we have
\[
\frac{1}{2} \Delta|f \tau(u)|^2 = |\tilde{\nabla}(f \tau(u))|^2 + \langle \tilde{\Delta}[f \tau(u)], f \tau(u) \rangle
\]
\[
= |\tilde{\nabla}(f \tau(u))|^2 - \sum_i \langle R^N(f \tau(u), du(e_i)) du(e_i), f \tau(u) \rangle
\]
\[
\geq |\tilde{\nabla}(f \tau(u))|^2.
\]
From Green theorem and the compactness of \((M, g)\), we have
\[
0 = \int_M \frac{1}{2} \Delta|f \tau(u)|^2 dv_g = \int_M |\tilde{\nabla}(f \tau(u))|^2 dv_g.
\]
Then, for every \(X \in \Gamma(TM)\), we have
\[
\tilde{\nabla}X|f \tau(u)| = 0.
\]
Let \(Y = \sum_i h(du(e_i), f \tau(u)) e_i\), we have
\[
\text{div}(Y) = \sum_k g(\nabla e_k Y, e_k)
\]
\[
= \sum_k [h(\nabla e_k du(e_k), f \tau(u)) - h(du(\nabla e_k e_k), f \tau(u))]
\]
\[
= h(\tau(u), f \tau(u)) = f|\tau(u)|^2.
\]
From (6), we have
\[
0 = \int_M \text{div}(Y) dv_g = \int_M f|\tau(u)|^2 dv_g.
\]
Since \(f > 0\) in \(M\), so we have \(\tau(u) = 0\). \(\Box\)

Corollary 3.2. Any \(f\)-biharmonic function in a compact manifold \((M, g)\) without boundary is constant.

Proof. From Theorem 3.1, \(u\) is an \(f\)-biharmonic function if and only if \(u\) is a harmonic function. On the other hand, any harmonic function in a compact manifold \((M, g)\) is constant, so we have \(u = C\). \(\Box\)

Theorem 3.3. Let \(u : (M^m, g) \to (N^n, h)\) be an \(f\)-biharmonic map from a complete Riemannian manifold \((M^m, g)\) into a Riemannian manifold \((N^n, h)\) with non-positive sectional curvature and let \(p \geq 2\) be a non-negative real constant.

(i) If
\[
\int_M f^p|\tau(u)|^p dv_g < \infty, \int_M |\tau(u)|^2 dv_g < \infty \text{ and } \int_M |du|^2 dv_g < \infty,
\]
then \(u\) is harmonic.

(ii) If \(Vol(M, g) = \infty\) and \(\int_M f^p|\tau(u)|^p dv_g < \infty\), then \(u\) is harmonic.
Proof. Take a fixed point \(x_0 \in M \) and for every \(r > 0 \), let us consider the following cut off function \(\lambda(x) \) on \(M \):

\[
\begin{cases}
0 \leq \lambda(x) \leq 1, & x \in M, \\
\lambda(x) = 1, & x \in B_r(x_0), \\
\lambda(x) = 0, & x \in M - B_2r(x_0), \\
|\nabla \lambda| \leq \frac{C}{r}, & x \in M,
\end{cases}
\]

where \(B_r(x_0) = \{ x \in M : d(x, x_0) < r \} \), \(C \) is a positive constant and \(d \) is the distance of \(M \). From (1), we have

\[
\int_M \langle -\tilde{\Delta}(f\tau(u)), \lambda^2|f\tau(u)|^{p-2}f\tau(u) \rangle dv_g
= \int_M \lambda^2 f^p|\tau(u)|^{p-2} \sum_i (R^N(\tau(u), du(e_i))du(e_i), \tau(u))dv_g \leq 0,
\]

where the inequality follows from the sectional curvature of \((N, h)\) is non-positive. From (8), we have

\[
0 \geq \int_M \langle -\tilde{\Delta}(f\tau(u)), \lambda^2|f\tau(u)|^{p-2}f\tau(u) \rangle dv_g
= \int_M \langle \tilde{\nabla}(f\tau(u)), \tilde{\nabla}(\lambda^2|f\tau(u)|^{p-2}f\tau(u)) \rangle dv_g
= \int_M \sum_{i=1}^{m} \langle \tilde{\nabla}_{e_i}(f\tau(u)), \tilde{\nabla}_{e_i}(\lambda^2|f\tau(u)|^{p-2}f\tau(u)) \rangle dv_g
= \int_M \sum_{i=1}^{m} \langle \tilde{\nabla}_{e_i}(f\tau(u)), 2\lambda e_i(\lambda)|f\tau(u)|^{p-2}f\tau(u) \rangle
+ \lambda^2 e_i(\lambda)|f\tau(u)|^{p-2}\tilde{\nabla}_{e_i}[f\tau(u)]dv_g
\]

\[
\geq \int_M \sum_{i=1}^{m} 2\lambda e_i(\lambda)|f\tau(u)|^{p-2}\langle \tilde{\nabla}_{e_i}[f\tau(u)], f\tau(u) \rangle dv_g
+ \int_M \sum_{i=1}^{m} (p-2)\lambda^2|f\tau(u)|^{p-4}\langle \tilde{\nabla}_{e_i}[f\tau(u)], f\tau(u) \rangle^2 dv_g
+ \int_M \sum_{i=1}^{m} \lambda^2|f\tau(u)|^{p-2}\langle \tilde{\nabla}_{e_i}[f\tau(u)], \tilde{\nabla}_{e_i}[f\tau(u)] \rangle dv_g
\]
where the inequality follows from
\[
\int_M \sum_{i=1}^{m} \lambda^2 |f \tau(u)|^{p-4} \langle \nabla e_i[f \tau(u)], \nabla e_i[f \tau(u)] \rangle dv_g \geq 0.
\]

From (9), we have
\[
\int_M \sum_{i=1}^{m} \lambda^2 |f \tau(u)|^{p-2} \langle \nabla e_i[f \tau(u)], \nabla e_i[f \tau(u)] \rangle dv_g
\]
\[
\leq - \int_M \sum_{i=1}^{m} 2 \lambda e_i(\lambda) |f \tau(u)|^{p-2} \langle \nabla e_i[f \tau(u)], f \tau(u) \rangle dv_g.
\]

By using Young’s inequality, we have
\[
\int_M \sum_{i=1}^{m} 2 \lambda e_i(\lambda) |f \tau(u)|^{p-2} \langle \nabla e_i[f \tau(u)], f \tau(u) \rangle dv_g
\]
\[
\leq \int_M \sum_{i=1}^{m} \lambda^2 |f \tau(u)|^{p-2} |\nabla e_i[f \tau(u)]|^2 dv_g + 2 \int_M |\nabla \lambda|^2 |f|^p |\tau(u)|^p dv_g.
\]

From (10) and (11), we have
\[
\int_M \sum_{i=1}^{m} \lambda^2 |f \tau(u)|^{p-2} |\nabla e_i[f \tau(u)]|^2 dv_g
\]
\[
\leq 4 \int_M |\nabla \lambda|^2 |f|^p |\tau(u)|^p dv_g \leq \frac{4C^2}{r^2} \int_M |f|^p |\tau(u)|^p dv_g.
\]

By assumption \(\int_M |f|^p |\tau(u)|^p dv_g < \infty \), letting \(r \to \infty \) in (12), we have
\[
\int_M \sum_{i=1}^{m} f^{p-2} |\tau(u)|^{p-2} \langle \nabla e_i[f \tau(u)], \nabla e_i[f \tau(u)] \rangle dv_g = 0.
\]

So we obtain that \(f|\tau(u)| \) is constant. If \(|\tau(u)| \neq 0 \), we get
\[
\int_M f^p |\tau(u)|^p = |f \tau(u)|^p Vol(M) = \infty,
\]
which yields a contradiction. So we have \(|\tau(u)| = 0 \), i.e., \(u \) is harmonic. We derive that (ii) is tenable.

For (i), we assume that
\[
\int_M f^p |\tau(u)|^p dv_g < \infty, \int_M |\tau(u)|^p dv_g < \infty, \int_M |du|^2 dv_g < \infty.
\]

We define a 1-form
\[
\alpha(X) = |f \tau(u)|^{\frac{p}{2}} \langle du(X), f \tau(u) \rangle,
\]
\[
\int_M f^p |\tau(u)|^p dv_g < \infty, \int_M |\tau(u)|^p dv_g < \infty, \int_M |du|^2 dv_g < \infty.
\]

We define a 1-form
\[
\alpha(X) = |f \tau(u)|^{\frac{p}{2}} \langle du(X), f \tau(u) \rangle,
\]
where $X \in \Gamma(TM)$. We note that
\begin{equation}
\int_{M} |\alpha| dv_g = \int_{M} \left(\sum_{i=1}^{m} |\alpha(e_i)|^2 \right)^{\frac{1}{2}} dv_g
\end{equation}
\begin{equation}
= \int_{M} \left(\sum_{i=1}^{m} [f^p u]^q du(e_i), f^p u \right) dv_g
\end{equation}
\begin{equation}
\leq \int_{M} |f^p u|^q|du|dv_g \leq \left[\int_{M} |f^p u|^p dv_g \right]^{\frac{1}{p}} \left[\int_{M} |du|^2 dv_g \right]^{\frac{1}{2}} < \infty.
\end{equation}
We compute
\begin{equation}
-\delta\alpha = \sum_{i=1}^{m} (\nabla_{e_i} \alpha)(e_i) = \sum_{i=1}^{m} \nabla_{e_i} \alpha(e_i) - \alpha(\nabla_{e_i} e_i)
\end{equation}
\begin{equation}
= \sum_{i=1}^{m} \nabla_{e_i} [f^p u]^q du(e_i), f^p u] - \sum_{i=1}^{m} [f^p u]^q du(\nabla_{e_i} e_i), f^p u]
\end{equation}
\begin{equation}
= \sum_{i=1}^{m} [f^p u]^q du(\nabla_{e_i} e_i), f^p u) = |f^p u|^q |f^p u|
\end{equation}
where the third equality follows from that $|f^p u|$ is constant and $\tilde{\nabla}_X f^p u = 0$, for all $X \in \Gamma(TM)$. We have
\begin{equation}
\int_{M} (-\delta\alpha) dv_g = \int_{M} |f^p u|^q |f^p u| dv_g \leq \left[\int_{M} f^p |f^p u|^p dv_g \right]^{\frac{1}{p}} \left[\int_{M} |f^p u|^q dv_g \right]^{\frac{1}{q}} < \infty.
\end{equation}
From $\int_{M} f^p |f^p u|^p dv_g < \infty$ and $\int_{M} |f^p u|^q dv_g < \infty$, we know the function $-\delta\alpha$ is also integrable over M. From this and (14), applying Lemma 2.1 for the 1-form α, we have
\begin{equation}
0 = \int_{M} (-\delta\alpha) dv_g = \int_{M} f^p |f^p u|^q + 1 dv_g.
\end{equation}
So we have $\tau(u) = 0$, i.e., u is harmonic. \hfill \Box

4. f-biharmonic submanifolds in a Riemannian manifold of non-positive sectional curvature

Theorem 4.1. Let $u : (M, g) \rightarrow (N, h)$ be an f-biharmonic isometric immersion from a complete Riemannian manifold into a Riemannian manifold (N, h) with non-positive sectional curvature and let p, q be two real constants satisfying $2 \leq p < \infty$ and $0 < q \leq p < \infty$. If
\begin{equation}
\int_{M} f^p |\tilde{H}|^q dv_g < \infty,
\end{equation}
then u is minimal.
Proof. From (3), we have
\[\Delta|f\vec{H}|^2 = \Delta\langle f\vec{H}, f\vec{H} \rangle = 2(\Delta^\perp(f\vec{H}), f\vec{H}) + 2|\nabla^\perp(f\vec{H})|^2 \]
\[= 2|\nabla^\perp(f\vec{H})|^2 + 2\sum_{i=1}^{m}\langle B(A_{f\vec{H}}e_i, e_i), f\vec{H} \rangle - 2\sum_{i=1}^{m}\langle R^N(f\vec{H}, e_i)e_i, f\vec{H} \rangle \]
\[\geq 2|\nabla^\perp(f\vec{H})|^2 + 2\sum_{i=1}^{m}\langle B(A_{f\vec{H}}e_i, e_i), f\vec{H} \rangle, \]
(14)

where the inequality follows from the sectional curvature of \(N \) is non-positive.

Now we proof the following inequality:
\[\sum_{i=1}^{m}\langle B(A_{f\vec{H}}e_i, e_i), f\vec{H} \rangle \geq mf^2|\vec{H}|^4. \]
(15)

Let \(x \in M, \) if \(\vec{H} = 0, \) we are done. If \(\vec{H}(x) \neq 0, \) we have at \(x, \)
\[\sum_{i=1}^{m}\langle B(A_{f\vec{H}}e_i, e_i), f\vec{H} \rangle = \sum_{i=1}^{m}f^2|\vec{H}|^2\langle B(A_{f\vec{H}}e_i, e_i), f\vec{H} \rangle \]
\[= \sum_{i=1}^{m}f^2|\vec{H}|^2\langle A_{f\vec{H}}e_i, A_{f\vec{H}}e_i \rangle = \sum_{i,j=1}^{m}f^2|\vec{H}|^2|\langle B(e_i, e_j), f\vec{H} \rangle|^2 \geq mf^2|\vec{H}|^4. \]

From (15) and (16), we have
\[\frac{\Delta|f\vec{H}|^2}{2} \geq 2|\nabla^\perp(f\vec{H})|^2 + 2mf^2|\vec{H}|^4. \]
(16)

Take a fixed point \(x_0 \in M \) and for every \(r > 0, \) let us consider the following cut off function \(\lambda(x) \) on \(M: \)
\[\begin{cases}
0 \leq \lambda(x) \leq 1, & x \in M, \\
\lambda(x) = 1, & x \in B_r(x_0), \\
\lambda(x) = 0, & x \in M - B_{2r}(x_0), \\
|\nabla \lambda| \leq \frac{C}{r}, & x \in M,
\end{cases} \]
(17)

where \(B_r(x_0) = \{ x \in M : d(x, x_0) < r \}, \) \(C \) is a positive constant and \(d \) is the distance of \(M. \) From (17), we have
\[- \int_M \nabla(\lambda^{n+4}|f\vec{H}|^n)\nabla|f\vec{H}|^2dv_g = \int_M \lambda^{n+4}|f\vec{H}|^n\Delta|f\vec{H}|^2dv_g \]
\[\geq 2\int_M \lambda^{n+4}|f\vec{H}|^n|\nabla^\perp(f\vec{H})|^2dv_g + 2m\int_M \lambda^{n+4}|f\vec{H}|^n|\vec{H}|^4dv_g, \]
(18)
where a is a positive constant to be determined later. On the other hand, we have
\[
- \int_M \nabla (\lambda^{a+4} |f \tilde{H}|^a) \nabla |f \tilde{H}|^2 \, dv_g \\
= - 2(a + 4) \int_M \lambda^{a+3} \nabla |f \tilde{H}|^a \langle \nabla \perp (f \tilde{H}), f \tilde{H} \rangle \, dv_g \\
- 2a \int_M \lambda^{a+4} |f \tilde{H}|^a \langle \nabla \perp (f \tilde{H}), f \tilde{H} \rangle^2 \, dv_g \\
\leq - 2(a + 4) \int_M \lambda^{a+3} \nabla |f \tilde{H}|^a \langle \nabla \perp (f \tilde{H}), f \tilde{H} \rangle \, dv_g.
\]
(19)

From (19) and (20), we have
\[
2 \int_M \lambda^{a+4} |f \tilde{H}|^a |\nabla \perp (f \tilde{H})|^2 \, dv_g + 2m \int_M \lambda^{a+4} |f \tilde{H}|^a f^2 |\tilde{H}|^4 \, dv_g \\
\leq - 2(a + 4) \int_M \lambda^{a+3} \nabla |f \tilde{H}|^a \langle \nabla \perp (f \tilde{H}), f \tilde{H} \rangle \, dv_g \\
\leq (a + 4)^2 \int_M \lambda^{a+2} f^{a+2} |\tilde{H}|^{a+2} |\nabla \lambda|^2 \, dv_g.
\]
(20)

From Young’s inequality, we have
\[
(a + 4)^2 \int_M f^{a+2} \lambda^a |\tilde{H}|^{a+2} |\nabla \lambda|^2 \, dv_g \\
= (a + 4)^2 \int_M f^{a+2} \lambda^a |\tilde{H}|^{a+2} |\tilde{H}|^{a+2-s} |\nabla \lambda|^2 \, dv_g \\
\leq \int_M \lambda^{a+4} \tilde{H}^{a+4} f^{a+2} \, dv_g \\
+ C(a, s) \int_M f^{a+2} \lambda^a (a+2-s) \frac{a+4}{s+4} |\tilde{H}|^{(a+2-s) \frac{a+4}{s+4}} |\nabla \lambda|^{2 \frac{a+4}{s+4}} \, dv_g,
\]
where $s \in (0, a+2)$ and $C(a, s)$ is a constant depending on a, s. From (22) and (23), we have
\[
\int_M \lambda^{a+4} |f \tilde{H}|^a |\nabla \perp (f \tilde{H})|^2 \, dv_g + (2m - 1) \int_M f^{a+2} \lambda^a |\tilde{H}|^{a+4} \, dv_g \\
\leq C(a, s) \int_M f^{a+2} \lambda^a (a+2-s) \frac{a+4}{s+4} |\tilde{H}|^{(a+2-s) \frac{a+4}{s+4}} |\nabla \lambda|^2 \frac{a+4}{s+4} \, dv_g,
\]
(23)
We know that when s varies from 0 to $a + 2$, then $(a + 2 - s)\frac{a + 1}{a + 4 - s}$ varies from $a + 2$ to 0. Let $q = (a + 2 - s)\frac{a + 1}{a + 4 - s}$, then $q \in (0, a + 2)$. Let $p = a + 2$, from \(\int_M f^p |\vec{H}|^p dv_g < \infty, 2 \leq p < \infty\) and $0 < q \leq p < \infty$, set $r \to \infty$ in (24), we have
\[
\int_M |f\vec{H}|^a|\nabla^\perp (f\vec{H})|^2 dv_g + (2m - 1) \int_M f^{a+2}|\vec{H}|^{a+4} dv_g = 0.
\]
So we have $\vec{H} = 0$. \(\Box\)

Theorem 4.2. Let $u : (M, g) \to (N, h)$ be an f-biharmonic isometric immersion from a complete Riemannian manifold into a Riemannian manifold (N, h) with non-positive sectional curvature. If
\[
\int_{B_r(x_0)} f^p dv_g \leq C_0 (1 + r)^s
\]
for some positive integer s, C_0 independent of r and $p \geq 2$, then u is minimal.

Proof. From (21), we have
\[
2 \int_M \lambda^a |f\vec{H}|^a |\nabla^\perp (f\vec{H})|^2 dv_g + 2m \int_M \lambda^{a+4} |f\vec{H}|^a f^2 |\vec{H}|^4 dv_g \leq -2(a + 4) \int_M \lambda^{a+3} \nabla\lambda f\vec{H}^a (\nabla^\perp (f\vec{H}), F'(\frac{m^2 |\vec{H}|^2}{2})f\vec{H}) dv_g.
\]
From Young’s inequality, we have
\[
-2(a + 4) \int_M \lambda^{a+3} \nabla\lambda f\vec{H}^a (\nabla^\perp (f\vec{H}), f\vec{H}) dv_g \leq \int_M \lambda^{a+4} |f\vec{H}|^a |\nabla^\perp (f\vec{H})|^2 dv_g + \int_M \lambda^{a+4} f^{a+2} |\vec{H}|^{a+4} dv_g + C(a) \int_M f^{a+2} |\nabla\lambda|^{a+4} dv_g,
\]
where $C(a)$ is a constant depending on a. From (26) and (27), we have
\[
\int_M \lambda^{a+4} f\vec{H}^a |\nabla^\perp (f\vec{H})|^2 dv_g + \int_M (2m - 1) \lambda^{a+4} f^{a+2} |\vec{H}|^{a+4} dv_g \leq C(a) \int_M f^{a+2} |\nabla\lambda|^{a+4} dv_g \leq C(a) \frac{C_0^{a+4}}{r^{a+4}} \int_{B_r(x_0)} f^{a+2} dv_g
\]
(27) \leq C(a) C_0^{a+4} 0 \frac{(1 + 2r)^s}{r^{a+4}}.

Let a be big enough and $r \to \infty$, then we finish the proof. \(\Box\)

Theorem 4.3. Let $u : (M, g) \to (N, h)$ be an f-biharmonic isometric immersion from a complete Riemannian manifold into a Riemannian manifold (N, h) whose sectional curvature is smaller than $-\varepsilon$ for some constant $\varepsilon > 0$ and $\int_{B_r(x_0)} |f\vec{H}|^p dv_g (p \geq 2)$ is of at most polynomial growth of r. Then u is minimal.
Proof. From the equation (3), we have
\[\Delta |f \vec{H}|^2 = \Delta \langle f \vec{H}, f \vec{H} \rangle = 2\langle \Delta^\perp (f \vec{H}), f \vec{H} \rangle + 2|\nabla^\perp |f \vec{H}|^2 \]
\[= 2|\nabla^\perp (f \vec{H})|^2 + 2 \sum_{i=1}^{m} \langle R^N(f \vec{H}, e_i), f \vec{H} \rangle - 2 \sum_{i=1}^{m} \langle R^N(f \vec{H}, e_i)e_i, f \vec{H} \rangle \]
\[\geq 2|\nabla^\perp (f \vec{H})|^2 + 2m|\vec{H}|^4 f^2 + 2m\varepsilon|f \vec{H}|^2 \]
\[\geq 2|\nabla^\perp (f \vec{H})|^2 + 2m\varepsilon|f \vec{H}|^2, \]
that is
\[\Delta |f \vec{H}|^2 \geq 2|\nabla^\perp (f \vec{H})|^2 + 2m\varepsilon|f \vec{H}|^2. \]
From (29), we have
\[-\int_M \nabla [\lambda^2 |f \vec{H}|^a] \nabla |f \vec{H}|^2 dv = \int_M [\lambda^2 |f \vec{H}|^a] \Delta |f \vec{H}|^2 dv \]
\[\geq 2\int_M \lambda^2 |f \vec{H}|^a |\nabla^\perp (f \vec{H})|^2 dv_g + 2m\varepsilon \int_M \lambda^2 |f \vec{H}|^{a+2} dv_g, \]
where \(\lambda \) is given by (18) and \(a \) is a nonnegative constant. We also have
\[-\int_M \lambda \nabla [\lambda^2 |f \vec{H}|^a] \nabla |f \vec{H}|^2 dv_g \]
\[= -4 \int_M \lambda \lambda^2 |f \vec{H}|^a \langle \nabla^\perp (f \vec{H}), f \vec{H} \rangle dv_g \]
\[- 2a \int_M \lambda^2 |f \vec{H}|^a \langle \nabla^\perp (f \vec{H}), f \vec{H} \rangle dv_g \]
\[\leq -4 \int_M \lambda \lambda^2 |f \vec{H}|^a \langle \nabla^\perp (f \vec{H}), f \vec{H} \rangle dv_g \]
\[\leq 2\int_M \lambda^2 |f \vec{H}|^a |\nabla^\perp (f \vec{H})|^2 dv_g + 2 \int_M |f \vec{H}|^{a+2} |\nabla \lambda|^2 dv_g \]
\[\leq 2\int_M \lambda^2 |f \vec{H}|^a |\nabla^\perp (f \vec{H})|^2 dv_g + 2 \int_M |f \vec{H}|^{a+2} \frac{C^2}{r^2} dv_g \int_{B_r(x_0)} |f \vec{H}|^{a+2} dv_g \]
\[\leq 2\int_M \lambda^2 |f \vec{H}|^a |\nabla^\perp (f \vec{H})|^2 dv_g + 2 \int_M |f \vec{H}|^{a+2} \frac{C^2}{r^2} dv_g \int_{B_r(x_0)} |f \vec{H}|^{a+2} dv_g. \]
From (30) and (31), we have
\[2m\varepsilon \int_{B_{2r}(x_0)} |f \vec{H}|^{a+2} dv_g \leq 2 \int_{B_{2r}(x_0)} |f \vec{H}|^{a+2} dv_g. \]
Letting \(g(r) = \int_{B_r(x_0)} |f \vec{H}|^{a+2} dv_g \), we have \(g(r) \leq \frac{C_1}{r^2} g(2r) \) where \(C_1 = \frac{c^2}{m\varepsilon} \).
Then we know \(g(r) \leq \frac{C_2}{r^2} g(2^n r) \), where \(C_2 \) is a constant independent of \(r \). From the assumption, we know \(g(r) \leq C_2(1 + 2^{an}r^s) \) for some integer \(s > 0 \). When \(r \)
is big enough, we have $g(r) \leq \frac{C^2(1+2^n r^n)}{r^n}$. Set $2n > s$, then $\lim_{r \to \infty} g(r) = 0$, so $\vec{H} = 0$. □

Definition. Let M be a submanifold in N with the metric $\langle \cdot, \cdot \rangle$, then we call M a ε-super f-biharmonic submanifold, if

$$\langle \Delta (f \vec{H}), f \vec{H} \rangle \geq (\varepsilon - 1) |\nabla (f \vec{H})|^2,$$

where $\varepsilon \in [0,1]$ is a constant.

Theorem 4.4. Let $u : (M,g) \to (N,h)$ be a complete ε-super f-biharmonic submanifold in (N,h) for $\varepsilon > 0$. If

$$\int_M |f \vec{H}|^p \, dv_g < \infty,$$

then u is minimal, where $p \geq 2$.

Proof. From (32), we have

$$(\varepsilon - 1) \int_M \lambda^2 |f \vec{H}|^n |\nabla (f \vec{H})|^2 \, dv_g \leq \int_M \lambda^2 |f \vec{H}|^n \langle \Delta (f \vec{H}), f \vec{H} \rangle \, dv_g$$

$$= - \int_M \lambda^2 |f \vec{H}|^n |\nabla (f \vec{H})|^2 \, dv_g - \int_M 2\lambda \nabla \lambda |f \vec{H}|^n \langle \nabla (f \vec{H}), f \vec{H} \rangle \, dv_g$$

$$- a \int_M \lambda^2 |f \vec{H}|^{n-2} |\nabla (f \vec{H}), f \vec{H}|^2 \, dv_g$$

$$\leq - \int_M \lambda^2 |f \vec{H}|^n |\nabla (f \vec{H})|^2 \, dv_g - \int_M 2\lambda \nabla \lambda |f \vec{H}|^n \langle \nabla (f \vec{H}), f \vec{H} \rangle \, dv_g,$$

where λ is defined by (18), $a \geq 0$, we have

$$\varepsilon \int_M \lambda^2 |f \vec{H}|^n |\nabla (f \vec{H})|^2 \, dv_g \leq - \int_M 2\lambda \nabla \lambda |f \vec{H}|^n \langle \nabla (f \vec{H}), f \vec{H} \rangle \, dv_g.$$
and then $\vec{H} = 0$ or $\nabla (f \vec{H}) = 0$.

We will prove that $\nabla (f \vec{H}) = 0$ implies $\vec{H} = 0$.

Set $x \in M$ such that $\nabla (f \vec{H}) = 0$. We take an orthonormal basis $\{e_i\}_{i=1}^m$ of $T_x M$, an orthonormal basis $\{v_\alpha\}_{\alpha=1}^m$ of $(T_x M)^\perp$, then we have

$$0 = \langle \nabla_{e_i} (f \vec{H}), e_j \rangle = -\langle f \vec{H}, B(e_i, e_j) \rangle. \quad (35)$$

From (36), we have

$$0 = \sum_{i=1}^m \langle f \vec{H}, B(e_i, e_i) \rangle = m|\vec{H}|^2 f,$$

so we obtain $\vec{H} = 0$. \hfill \square

References

Guoqing He
School of Science
Nanjing University of Science and Technology
Nanjing 210094, P. R. China
and
School of Mathematics and Computer Science
AnHui Normal University
Wuhu 241000, P. R. China
E-mail address: hgq1001@mail.ahnu.edu.cn

Jing Li
School of Science
Nanjing University of Science and Technology
Nanjing 210094, P. R. China
E-mail address: lijing123999@163.com

Peibiao Zhao
School of Science
Nanjing University of Science and Technology
Nanjing 210094, P. R. China
E-mail address: pbzhao@njust.edu.cn