ON THE NUMBER OF CYCLIC SUBGROUPS
OF A FINITE GROUP

MOHAMMAD HOSSEIN JAFARI AND ALI REZA MADADI

Abstract. Let G be a finite group and m a divisor of $|G|$. We prove that G has at least $\tau(m)$ cyclic subgroups whose orders divide m, where $\tau(m)$ is the number of divisors of m.

1. Introduction

Throughout all groups are assumed to be finite. A well known result in group theory says that a cyclic group of order n has a unique subgroup of order d, for any divisor d of n, so a cyclic group of order n has exactly $\tau(n)$ (necessarily cyclic) subgroups. A generalization of this result was obtained by Richards in [3]. He proved that a group of order n has at least $\tau(n)$ cyclic subgroups, and the group is cyclic if and only if it has exactly $\tau(n)$ cyclic subgroups. In this paper we generalize Richards’ result and then classify groups of order n with $\tau(n) + 2$ subgroups. Also we obtain a generalization of the Kesava Menon identity [2].

2. Main results

For a group G and a divisor m of $|G|$, let $A_G(m)$ denote the number of cyclic subgroups of G whose orders divide m and $B_G(m)$ denote the number of solutions in G of the equation $x^m = 1$. Also for any natural number n and any subset π of prime numbers, we write $n = n_\pi n_{\pi^c}$, where π^c is the complement of π in prime numbers, and n_π and n_{π^c} are the π-part and π^c-part of n, respectively.

The following theorem shows that there is a close connection between the arithmetic functions A_G and B_G. Note that for any $n \in \mathbb{N}$, the set $\{d : 1 \leq d \leq n, (d,n) = 1\}$ denoted by $U(\mathbb{Z}_n)$ is the group of integers modulo n under multiplication.
Theorem 2.1. Let G be a group of order n and m a divisor of n. Then

$$A_G(m) = \frac{1}{\varphi(n)} \sum_{d \in U(\mathbb{Z}_n)} B_G((m,d-1)),$$

where φ is the Euler totient function.

Proof. Let Ω denote the set $\{x \in G : x^m = 1\}$. Then, obviously, the group $U(\mathbb{Z}_n)$ acts on Ω via $x.\bar{r} = x^r$, where $x \in \Omega$ and $\bar{r} \in U(\mathbb{Z}_n)$. We claim that $x,y \in \Omega$ have the same orbits if and only if $\langle x \rangle = \langle y \rangle$. If x and y have the same orbits, then, obviously, $\langle x \rangle = \langle y \rangle$. Conversely, suppose that $\langle x \rangle = \langle y \rangle$. Hence there is an $r \in \mathbb{N}$ such that $y = x^r$ and $(r,o(x)) = 1$. Let $\pi, \pi_1,$ and π_2 be the set of prime divisors of n, $o(x)$, and r, respectively. It is trivial that $\pi_1 \subseteq \pi$ and $\pi_1 \cap \pi_2 = \emptyset$. Now if we let $\pi_3 = \pi - (\pi_1 \cup \pi_2)$ and $k = n_{\pi_1}n_{\pi_2} + r$, then it is easy to see that $(k,n) = 1$ and $y = x^k$. Thus $y = x.k$, as desired. Therefore, by the claim, the number of the orbits of the action is equal to $A_G(m)$, the number of cyclic subgroups of G whose orders divide m. Now, by the Cauchy-Frobenius Lemma, we have

$$A_G(m) = \frac{1}{\varphi(n)} \sum_{d \in U(\mathbb{Z}_n)} \chi(d),$$

where χ is the permutation character associated with the action. But

$$\chi(d) = |\{x \in \Omega : x.d = x\}|$$
$$= |\{x \in \Omega : x^d = x\}|$$
$$= |\{x \in G : x^m = 1, x^{d-1} = 1\}|$$
$$= |\{x \in G : x^{(m,d-1)} = 1\}|$$
$$= B_G((m,d-1)),$$

and the proof is complete.

The following corollary can be viewed as a generalization of the well-known Kesava Menon identity [2]. For other generalizations of the Kesava Menon identity, we refer the reader to [5] and [7].

Corollary 2.2. Let $m, n \in \mathbb{N}$ and $m \mid n$. Then

$$\sum_{d \in U(\mathbb{Z}_n)} (m,d-1) = \varphi(n)\tau(m).$$

Proof. Let G be a cyclic group of order n. Since G has a unique (necessarily cyclic) subgroup of each divisor of n, so G has exactly $\tau(m)$ cyclic subgroups whose orders divide m, hence $A_G(m) = \tau(m)$. It is also obvious that $B_G((m,d-1)) = (m,d-1)$ for any $d \in U(\mathbb{Z}_n)$. Now the result follows from the previous theorem.
Before giving another consequence of the above theorem, we will characterize the set \(\{(m,d-1): d \in U(\mathbb{Z}_n)\} \) using the Chinese remainder theorem. In the following, let \(\pi(m) \) be the set of all prime divisors of the natural number \(m \).

Also let \(D(m) \) be the set of all even divisors of \(m \) if \(m \) is even, and the set of all divisors of \(m \) if \(m \) is odd.

Lemma 2.3. Let \(m, n \in \mathbb{N} \), \(m | n \). Then \(D(m) = \{(m, d - 1): d \in U(\mathbb{Z}_n)\} \).

Proof. Let \(X = \{(m, d - 1): d \in U(\mathbb{Z}_n)\} \). We consider two cases.

1) Suppose that \(m \) is odd. It is clear that \(X \subseteq D(m) \). Conversely, we show that if \(k \in D(m) \), then \(k \in X \). To this end, let \(\sigma = \pi(k), \pi = \pi(m), \pi_1 = \{2\} \), and \(\pi_2 = \pi' - \pi_1 \). Hence \(\sigma \subseteq \pi \) and \(n = n_{\pi_1} n_{\pi_2} \). Now, by the Chinese remainder theorem, the following system of linear congruences

\[
\begin{align*}
 kx &\equiv 1 \pmod{n_{\sigma_2}} \\
 kx &\equiv 1 \pmod{p} \quad \text{if } p \in \pi - \sigma \\
 x &\equiv 1 \pmod{p} \quad \text{if } p \in \sigma \\
 x &\equiv 0 \pmod{2}
\end{align*}
\]

has a simultaneous solution, say \(a \). The last congruence says that \(a \) is even, so \(b = 1 + ka \) is odd. We now show that \((b, n) = 1 \). Assume by way of contradiction that \(q \) is a prime divisor of \((b, n) \), and so \(q \) is odd. Also note that \(q \notin \sigma \), for \(q | 1 + ka \). It follows therefore that either \(q \in \pi_2 \) or \(q \in \pi - \sigma \). Suppose first that \(q \in \pi_2 \). Hence \(q | n_{\pi_2} \), and since \(b \equiv 2 \pmod{n_{\pi_2}} \) and \(q | b \), we deduce that \(q = 2 \), a contradiction. Suppose now that \(q \in \pi - \sigma \). Hence \(b \equiv 2 \pmod{q} \), and since \(q | b \), it then follows that \(q = 2 \), again a contradiction. Now we have

\[
(m, b - 1) = (m, ka) = k(m_k, a) = k,
\]

where the last equality follows from the second and third congruences of the above system. Therefore, \(k \in X \), and the proof completes.

2) Suppose now that \(m \) is even. Hence \(n \) is even and consequently \(X \subseteq D(m) \). Now we show that if \(k \in D(m) \), then \(k \in X \). To this end, let \(\sigma = \pi(k) \) and \(\pi = \pi(m) \). Hence \(2 \in \sigma \subseteq \pi \) and \(n = n_{\pi_1} n_{\pi_2} \). Again, by the Chinese remainder theorem, the following system of linear congruences

\[
\begin{align*}
 kx &\equiv 1 \pmod{n_{\sigma_1}} \\
 kx &\equiv 1 \pmod{p} \quad \text{if } p \in \pi - \sigma \\
 x &\equiv 1 \pmod{p} \quad \text{if } p \in \sigma
\end{align*}
\]

has a simultaneous solution, say \(a \). Since \(k \) is even, so \(b = 1 + ka \) is odd. We now show that \((b, n) = 1 \). Assume by way of contradiction that \(q \) is a prime divisor of \((b, n) \), and so \(q \) is odd. Again \(q \notin \sigma \) for \(q | 1 + ka \). It follows therefore that either \(q \in \pi' \) or \(q \in \pi - \sigma \). Suppose first that \(q \in \pi' \). Hence \(q | n_{\pi'} \), and since \(b \equiv 2 \pmod{n_{\pi'}} \) and \(q | b \), we deduce that \(q = 2 \), a contradiction. Suppose now that \(q \in \pi - \sigma \). Hence \(b \equiv 2 \pmod{q} \), and since \(q | b \), it then follows that \(q = 2 \), again a contradiction. Now we have

\[
(m, b - 1) = (m, ka) = k(m_k, a) = k,
\]
where the last equality follows from the second and third congruences of the latter system. Therefore, \(k \in X \), and the proof is complete. \(\square \)

There is a classic result in group theory which says that a group \(G \) of order \(n \) is cyclic if and only if the number of solutions in \(G \) of the equation \(x^d = 1 \) is at most \(d \), for any divisor \(d \) of \(n \). We generalize this result in the next theorem.

Theorem 2.4. Let \(G \) be a group of order \(n \) and \(m \) a divisor of \(n \). Then the following are equivalent:

1) \(G \) has a unique, and necessarily cyclic, subgroup of order \(m \);
2) the number of solutions in \(G \) of the equation \(x^d = 1 \) is exactly \(d \) for any \(d \in D(m) \);
3) the number of solutions in \(G \) of the equation \(x^d = 1 \) is at most \(d \) for any \(d \in D(m) \).

Proof. 1) \(\Rightarrow \) 2): Let \(H \) be the unique, and necessarily cyclic, subgroup of \(G \) of order \(m \). Let \(x \in G \) be arbitrary such that \(x^d = 1 \), where \(d \in D(m) \). We show that \(x \in H \). To this end, it suffices to show that if \(P \) is any Sylow \(p \)-subgroup of \(\langle x \rangle \), then \(P \subseteq H \). Since normalizers grow in \(p \)-groups, so there exists a \(p \)-subgroup \(Q \) of \(G \) such that \(P \subseteq Q \) and \(|Q| = p^s \), where \(m = p^s s \) with \(p \nmid s \).

Now if \(K \) is the unique subgroup of \(H \) of order \(s \), then \(K \) is normal in \(G \), so \(QK \) is a subgroup of \(G \) of order \(m \). By uniqueness of \(H \), we have \(H = QK \). Therefore, \(P \subseteq Q \subseteq H \), and the proof is complete.

2) \(\Rightarrow \) 3): Trivial.

3) \(\Rightarrow \) 1): First we claim that if \(m \) is even, then \(B_G(d) \leq d \) for each odd divisor \(d \) of \(m \).

Let \(d \) be an arbitrary odd divisor of \(m \). Since \(B_G(2) \leq 2 \), so \(G \) has a unique (necessarily central) involution \(z \). Now if \(y^d = 1 \) for some \(y \in G \), then we have \(y^{2d} = 1 = (zy)^{2d} \) and \((zy)^d \neq 1 \). Thus if we let \(C = \{ x \in G : x^d = 1 \} \) and \(D = \{ x \in G : x^{2d} = 1 \} \), then \(C \cap zC = \emptyset, |zC| = |C| \), and \(C \cup zC \subseteq D \). Since \(|D| = B_G(2d) \leq 2d \), so \(B_G(d) = |C| \leq d \), as desired.

Now we prove that \(G \) has a unique subgroup of order \(m \), and that this subgroup is cyclic. Let \(p \) be an arbitrary prime divisor of \(m \) such that \(p^n \mid m \) and \(p^{n+1} \nmid m \). Since \(G \) has a \(p \)-subgroup of order \(p^a \) and \(B_G(p^n) \leq p^a \), so \(G \) has a unique subgroup \(H_p \) of order \(p^a \). This shows that each Sylow \(p \)-subgroup of \(G \) is either cyclic or generalized quaternion. Hence if \(p \) is odd, then \(H_p \) is cyclic. Now suppose that \(p = 2 \). If \(a = 1 \), then, as we know, \(\langle z \rangle \) is the unique (necessarily central) subgroup of \(G \) of order 2. If \(a \geq 2 \), then a Sylow 2-subgroup of \(G \) must be cyclic, because in a generalized quaternion group we have \(B_G(4) \geq 8 \), which contradicts the hypothesis. Hence, again by hypothesis, \(G \) has a unique (necessarily cyclic) subgroup of order \(2^a \). Therefore, in either case, \(H_2 \) is the unique (necessarily cyclic) subgroup of \(G \) of order \(2^a \). Now the subgroup \(H = \prod_{p \in \pi(m)} H_p \) is the unique (necessarily cyclic) subgroup of \(G \) of order \(m \), and the proof is complete. \(\square \)
Remark. Notice that the above proof shows that if G has a unique, and necessarily cyclic, subgroup of order m, then the number of solutions in G of the equation $x^d = 1$ is exactly d for any divisor d of m.

Now we are ready to state our main theorem.

Theorem 2.5. Let G be a group of order n and m a divisor of n. Then

1) \(A_G(m) \geq \tau(m) \). In other words, G has at least $\tau(m)$ cyclic subgroups whose orders divide m.

2) \(A_G(m) = \tau(m) \) if and only if G has a unique, and necessarily cyclic, subgroup of order m.

Proof. 1) By the Frobenius theorem we have \(B_G((m,d-1)) \geq (m,d-1) \), for any $\bar{d} \in U(\mathbb{Z}_n)$, and so, by Theorem 2.1 and Corollary 2.2, we obtain

\[
A_G(m) \geq \frac{1}{\varphi(n)} \sum_{d \in U(\mathbb{Z}_n)} (m,d-1) = \tau(m).
\]

2) From the proof of the previous part, we know that $A_G(m) = \tau(m)$ if and only if \(B_G((m,d-1)) = (m,d-1) \), for any $\bar{d} \in U(\mathbb{Z}_n)$. Now the result easily follows from Lemma 2.3 and Theorem 2.4. \[\square\]

Corollary 2.6. Let G be a group of order n and π a set of primes. Then

1) G has at least $\tau(n_{\pi})$ cyclic π-subgroups;

2) G has exactly $\tau(n_{\pi})$ cyclic π-subgroups if and only if G has a normal cyclic Hall π-subgroup.

Corollary 2.7. There does not exist a group G of order n having $\tau(n) + 1$ subgroups.

Proof. Deny. Then G is not cyclic and so, by Theorem 2.5, G has at least $\tau(n)+1$ cyclic subgroups. Therefore G has at least $\tau(n)+2$ subgroups, contrary to assumption. \[\square\]

Finally we are going to classify groups of order n having $\tau(n) + 2$ subgroups. To do this, we have to characterize minimal noncyclic groups, that is, noncyclic groups all of whose proper subgroups are cyclic. The following proposition which is a characterization of minimal noncyclic groups has also been appeared in [6] as Theorem 2.1. However, our proof is different than theirs.

Proposition 2.8. Let G be a minimal noncyclic group. Then G is isomorphic to one of the following:

\begin{itemize}
 \item[i)] $\mathbb{Z}_p \times \mathbb{Z}_p$, where p is a prime;
 \item[ii)] Q_8;
 \item[iii)] $\langle a, b \mid a^q = b^r = 1, b^{-1}ab = a^s \rangle$, where $r, s \in \mathbb{N}, q \mid s - 1, q \mid s^p - 1$, and p, q are distinct primes.
\end{itemize}
Proposition 2.8. Let \(p \) be a prime number. Then, if \(p \) has the structure of \(G \) for some prime \(p \), then \(G \) is minimal nonabelian. If \(p \) is a product of distinct primes, then \(G \) is isomorphic to one of the following: 1) \(\mathbb{Z}_p \times \mathbb{Z}_p \), 2) \(P \mathbb{Z}_p \), or 3) \(\langle a, b | a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle \), where \(r \in \mathbb{N} \).

Proof. By Theorem 6.5.8 in [4], either 1) \(G \) is a p-group for some prime \(p \), or 2) \(G = PQ \), where \(P \in \text{Syl}_p(G) \) is cyclic and \(Q \in \text{Syl}_q(G) \) is an elementary abelian normal subgroup of \(G \) for some distinct primes \(p \) and \(q \). In the first case, since all maximal subgroups of \(G \) are cyclic by assumption, hence by the structure of p-groups with a cyclic maximal subgroup, see Theorem 12.5.1 in [1], we easily deduce that \(G \) is isomorphic to \(Q_p \). In the second case, since \(G \) is minimal noncyclic, so \(Q \) is isomorphic to \(\mathbb{Z}_q \) and it can be seen that \(G \) has the structure mentioned in iii).

The last corollary gives a characterization of groups of order \(n \) having \(\tau(n) + 2 \) subgroups.

Corollary 2.9. Let \(G \) be a group of order \(n \). Then \(G \) has \(\tau(n) + 2 \) subgroups if and only if \(G \) is isomorphic to one of the following:

1) \(V_4 \);
2) \(Q_8 \);
3) \(\langle a, b | a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle \), where \(r \in \mathbb{N} \).

Proof. Let \(G \) have \(\tau(n) + 2 \) subgroups. Hence \(G \) is minimal noncyclic. Now, by Proposition 2.8, \(G \) is either \(\mathbb{Z}_p \times \mathbb{Z}_p \), or \(Q_8 \), or \(\langle a, b | a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle \), where \(p, q, r, s \) satisfy in some certain conditions. If \(G = \mathbb{Z}_p \times \mathbb{Z}_p \), then \(G \) has \(p + 3 \) subgroups. On the other hand, by hypothesis, \(G \) has \(\tau(p^2) + 2 = 5 \) subgroups. Hence \(p = 2 \) and \(G = V_4 \). Obviously, \(Q_8 \) has \(\tau(8) + 2 = 6 \) subgroups. Finally if \(G = \langle a, b | a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle \), then \(n = p'q \). But all subgroups of \(G \) are \(\langle b, a^{(1-s)} \rangle, 1 \leq i \leq q, \langle b^{p^j} \rangle, 1 \leq j \leq r \). Therefore \(G \) has \(1 + q + 2r \) subgroups. On the other hand, by hypothesis, \(G \) has \(\tau(p'q) + 2 = 4 + 2r \) subgroups. Hence \(q = 3 \). It then follows from \(3 \nmid s - 1 \) and \(s^p \equiv 1 \pmod{3} \) that \(p = 2 \) and \(s = 2 \). This completes the proof.

\[\Box \]

References

Mohammad Hossein Jafari
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz
Tabriz 5166616471, Iran
E-mail address: jafari@tabrizu.ac.ir

Ali Reza Madadi
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz
Tabriz 5166616471, Iran
E-mail address: a-madadi@tabrizu.ac.ir