DOI QR코드

DOI QR Code

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol (Department of Materials Science and Engineering, Hongik University) ;
  • Yang, Heesun (Department of Materials Science and Engineering, Hongik University)
  • Received : 2017.08.31
  • Accepted : 2017.09.25
  • Published : 2017.11.30

Abstract

The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.

Keywords

References

  1. K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. Myoung, S. Y. Yim, and H. Yang, "Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer," ACS Nano, 9 [11] 10941-49 (2015). https://doi.org/10.1021/acsnano.5b05513
  2. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, "Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure," Nano Lett., 12 [5] 2362-66 (2012). https://doi.org/10.1021/nl3003254
  3. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, "White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights," Adv. Mater., 22 [28] 3076-80 (2010). https://doi.org/10.1002/adma.201000525
  4. R. D. Zhu, Z. Y. Luo, H. W. Chen, Y. J. Dong, and S. T. Wu, "Realizing Rec. 2020 Color Gamut with Quantum Dot Displays," Opt. Express, 23 [18] 23680-93 (2015). https://doi.org/10.1364/OE.23.023680
  5. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites ($CsPbX_3$, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., 15 [6] 3692-96 (2015). https://doi.org/10.1021/nl5048779
  6. A. I. Ekimov and A. A. Onushchenko, "Quantum Size Effect in Three-Dimensional Microscopic Semiconductor Crystals," Jetp Lett., 34 [6] 345-49 (1981).
  7. L. Brus, "Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State," J. Chem. Phys., 80 [9] 4403-9 (1984). https://doi.org/10.1063/1.447218
  8. L. Brus, "Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory," J. Phys. Chem., 90 [12] 2555-60 (1986). https://doi.org/10.1021/j100403a003
  9. F. Hetsch, N. Zhao, S. V. Kershaw, and A. L. Rogach, "Quantum Dot Field Effect Transistors," Mater. Today, 16 [9] 312-25 (2013). https://doi.org/10.1016/j.mattod.2013.08.011
  10. P. V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters," J. Phys. Chem. C, 112 [48] 18737-53 (2008). https://doi.org/10.1021/jp806791s
  11. J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, "High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots," Nano Lett., 15 [6] 3793-99 (2015). https://doi.org/10.1021/acs.nanolett.5b00392
  12. E. H Sargent, "Infrared Quantum Dots," Adv. Mater., 17 [5] 515-22 (2005). https://doi.org/10.1002/adma.200401552
  13. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer," Nature, 370 [6488] 354-57 (1994). https://doi.org/10.1038/370354a0
  14. X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, "Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots," Nature, 515 [7525] 96-9 (2014). https://doi.org/10.1038/nature13829
  15. H. Zhang, X. W. Sun, and S. M. Chen, "Over 100 cd/A Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure," Adv. Funct. Mater., 27 [21] 1700610 (2017). https://doi.org/10.1002/adfm.201700610
  16. A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science, 271 [5251] 933-37 (1996). https://doi.org/10.1126/science.271.5251.933
  17. L. H. Qu and X. G. Peng, "Control of Photoluminescence Properties of CdSe Nanocrystals in Growth," J. Am. Chem. Soc., 124 [9] 2049-55 (2002). https://doi.org/10.1021/ja017002j
  18. C. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and Characterization of Nearly Monodisperse CdE (E=Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites," J. Am. Chem. Soc., 115 [19] 8706-15 (1993). https://doi.org/10.1021/ja00072a025
  19. P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, and S. Tamang, "Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials," Chem. Rev., 116 [18] 10731-819 (2016). https://doi.org/10.1021/acs.chemrev.6b00116
  20. J. P. Park, J. J. Lee, and S. W. Kim, "Highly Luminescent InP/GaP/ZnS QDs Emitting in the Entire Color Range via a Heating Up Process," Sci. Rep., 6, 30094 (2016). https://doi.org/10.1038/srep30094
  21. W. S. Song and H. Yang, "Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots," Chem. Mater., 24 [10] 1961-67 (2012). https://doi.org/10.1021/cm300837z
  22. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe) ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites," J. Phys. Chem. B, 101 [46] 9463-75 (1997). https://doi.org/10.1021/jp971091y
  23. Z. A. Peng and X. G. Peng, "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals using CdO as Precursor," J. Am. Chem. Soc., 123 [1] 183-84 (2001). https://doi.org/10.1021/ja003633m
  24. W. K. Bae, K. Char, H. Hur, and S. Lee, "Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients," Chem. Mater., 20 [2] 531-39 (2008). https://doi.org/10.1021/cm070754d
  25. J. Chang and E. R. Waclawik, "Colloidal Semiconductor Nanocrystals: Controlled Synthesis and Surface Chemistry in Organic Media," RSC Adv., 4 [45] 23505-27 (2014). https://doi.org/10.1039/C4RA02684E
  26. V. Klimov, D. McBranch, C. Leatherdale, and M. Bawendi, "Electron and Hole Relaxation Pathways in Semiconductor Quantum Dots," Phys. Rev. B, 60 [19] 13740 (1999). https://doi.org/10.1103/PhysRevB.60.13740
  27. X. Y. Wang, L. H. Qu, J. Y. Zhang, X. G. Peng, and M. Xiao, "Surface-Related Emission in Highly Luminescent CdSe Quantum Dots," Nano Lett., 3 [8] 1103-6 (2003). https://doi.org/10.1021/nl0342491
  28. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, "Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States," J. Chem. Phys., 96 [2] 946-54 (1992). https://doi.org/10.1063/1.462114
  29. M. A. Hines and P. Guyot-Sionnest, "Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals," J. Phys. Chem., 100 [2] 468-71 (1996). https://doi.org/10.1021/jp9530562
  30. S. Kim, J. Park, T. Kim, E. Jang, S. Jun, H. Jang, B. Kim, and S. W. Kim, "Reverse Type-I ZnSe/InP/ZnS Core/Shell/ Shell Nanocrystals: Cadmium-Free Quantum Dots for Visible Luminescence," Small, 7 [1] 70-3 (2011). https://doi.org/10.1002/smll.201001096
  31. D. Battaglia, J. J. Li, Y. J. Wang, and X. G. Peng, "Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells," Angew. Chem. Int. Ed., 42 [41] 5035-39 (2003). https://doi.org/10.1002/anie.200352120
  32. X. H. Zhong, R. G. Xie, Y. Zhang, T. Basche, and W. Knoll, "High-Quality Violet-to-Red-Emitting ZnSe/CdSe Core/ Shell Nanocrystals," Chem. Mater., 17 [16] 4038-42 (2005). https://doi.org/10.1021/cm050948y
  33. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, "Type-II Quantum Dots: CdTe/CdSe (Core/Shell) and CdSe/ZnTe (Core/Shell) Heterostructures," J. Am. Chem. Soc., 125 [38] 11466-67 (2003). https://doi.org/10.1021/ja0361749
  34. J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, J. Shin, J. B. Park, J. H. Choi, K. Cho, S. M. Park, T. Joo, and S. Kim, "ZnTe/ZnSe (Core/ Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties," Chem. Mater., 22 [1] 233-40 (2010). https://doi.org/10.1021/cm9027995
  35. B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, "'Giant' CdSe/ CdS Core/Shell Nanocrystal Quantum Dots As Efficient Electroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance," Nano Lett., 12 [1] 331-36 (2012). https://doi.org/10.1021/nl203620f
  36. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/ CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc., 119 [30] 7019-29 (1997). https://doi.org/10.1021/ja970754m
  37. Y. S. Liu, Y. H. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, "pH-Sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells," J. Phys. Chem. C, 111 [7] 2872-78 (2007). https://doi.org/10.1021/jp0654718
  38. A. Y. Nazzal, X. Y. Wang, L. H. Qu, W. Yu, Y. J. Wang, X. G. Peng, and M. Xiao, "Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films," J. Phys. Chem. B, 108 [18] 5507-15 (2004). https://doi.org/10.1021/jp035361q
  39. A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, "The Effect of a Common Purification Procedure on the Chemical Composition of the Surfaces of CdSe Quantum Dots Synthesized with Trioctylphosphine Oxide," J. Phys. Chem. C, 114 [2] 897-906 (2010). https://doi.org/10.1021/jp909492w
  40. Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, "Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots," Nat. Photonics, 1 [12] 717-22 (2007). https://doi.org/10.1038/nphoton.2007.226
  41. K. Kim, J. Y. Woo, S. Jeong, and C. S. Han, "Photoenhancement of a Quantum Dot Nanocomposite via UV Annealing and its Application to White LEDs," Adv. Mater., 23 [7] 911-14 (2011). https://doi.org/10.1002/adma.201002979
  42. D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H. Weller, "CdSe/CdS/ZnS and CdSe/ZnSe/ ZnS Core-Shell-Shell Nanocrystals," J. Phys. Chem. B, 108 [49] 18826-31 (2004). https://doi.org/10.1021/jp046481g
  43. S. S. Xu, H. B. Shen, C. H. Zhou, H. Yuan, C. S. Liu, H. Z. Wang, L. Ma, and L. S. Li, "Effect of Shell Thickness on the Optical Properties in $CdSe/CdS/Zn_{0.5}Cd_{0.5}S/ZnS$ and $CdSe/CdS/ZnxCd_{1-x}S/ZnS$ Core/Multishell Nanocrystals," J. Phys. Chem. C, 115 [43] 20876-81 (2011). https://doi.org/10.1021/jp204831y
  44. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, "InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability," Chem. Mater., 23 [20] 4459-63 (2011). https://doi.org/10.1021/cm201550w
  45. K. H. Lee, J. H. Lee, H. D. Kang, C. Y. Han, S. M. Bae, Y. Lee, J. Y. Hwang, and H. Yang, "Highly Fluorescence-Stable Blue CdZnS/ZnS Quantum Dots against Degradable Environmental Conditions," J. Alloys Compd., 610 511-16 (2014). https://doi.org/10.1016/j.jallcom.2014.05.052
  46. S. Jun and E. Jang, "Bright and Stable Alloy Core/Multishell Quantum Dots," Angew. Chem. Int. Ed., 52 [2] 679-82 (2013). https://doi.org/10.1002/anie.201206333
  47. J. Cho, Y. K. Jung, J. K. Lee, and H. S. Jung, "Highly Efficient Blue-Emitting CdSe-Derived Core/Shell Gradient Alloy Quantum Dots with Improved Photoluminescent Quantum Yield and Enhanced Photostability," Langmuir, 33 [15] 3711-19 (2017). https://doi.org/10.1021/acs.langmuir.6b04333
  48. B. Huang, R. L. Xu, N. Z. Zhuo, L. Zhang, H. B. Wang, Y. P. Cui, and J. Y. Zhang, " 'Giant' Red and Green Core/ Shell Quantum Dots with High Color Purity and Photostability," Superlattices Microstruct., 91 201-7 (2016). https://doi.org/10.1016/j.spmi.2016.01.015
  49. X. B. Wang, W. W. Li, and K. Sun, "Stable Efficient CdSe/ CdS/ZnS Core/Multi-Shell Nanophosphors Fabricated Through a Phosphine-Free Route for White Light-Emitting-Diodes with High Color Rendering Properties," J. Mater. Chem., 21 [24] 8558-65 (2011). https://doi.org/10.1039/c1jm00061f
  50. J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, "Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes," Adv. Mater., 19 [15] 1927-32 (2007). https://doi.org/10.1002/adma.200602642
  51. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donega, "Highly Luminescent Water-Soluble CdTe Quantum Dots," Nano Lett., 3 [4] 503-7 (2003). https://doi.org/10.1021/nl034054t
  52. F. Dubois, B. Mahler, B. Dubertret, E. Doris, and C. Mioskowski, "A Versatile Strategy for Quantum Dot Ligand Exchange," J. Am. Chem. Soc., 129 [3] 482-83 (2007). https://doi.org/10.1021/ja067742y
  53. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, "Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent," Chem. Mater., 16 [17] 3318-22 (2004). https://doi.org/10.1021/cm049476y
  54. H. B. Shen, X. W. Bai, A. Wang, H. Z. Wang, L. Qian, Y. X. Yang, A. Titov, J. Hyvonen, Y. Zheng, and L. S. Li, "High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality $ZnxCd_{1-x}S/ZnS$ Core/Shell Quantum Dots," Adv. Funct. Mater., 24 [16] 2367-73 (2014). https://doi.org/10.1002/adfm.201302964
  55. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum," Nano Lett., 9 [7] 2532-36 (2009). https://doi.org/10.1021/nl9002969
  56. D. Zhao, Z. K. He, W. H. Chan, and M. M. F. Choi, "Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-L-cysteine Via Hydrothermal Method," J. Phys. Chem. C, 113 [4] 1293-300 (2009). https://doi.org/10.1021/jp808465s
  57. J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, and M. G. Bawendi, "Blue Luminescence from (CdS)ZnS Core-Shell Nanocrystals," Angew. Chem. Int. Ed., 43 [16] 2154-58 (2004). https://doi.org/10.1002/anie.200453728
  58. X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White, and W. Knoll, "Composition-Tunable $ZnxCd_{1-x}Se$ Nanocrystals with High Luminescence and Stability," J. Am. Chem. Soc., 125 [28] 8589-94 (2003). https://doi.org/10.1021/ja035096m
  59. A. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. Carroll, and L. E. Brus, "Nucleation and Growth of Cadmium Selendie on Zinc Sulfide Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media," J. Am. Chem. Soc., 112 [4] 1327-32 (1990). https://doi.org/10.1021/ja00160a005
  60. R. G. Xie, U. Kolb, J. X. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core $CdS/Zn_{0.5}Cd_{0.5}S/ZnS$ Multishell Nanocrystals," J. Am. Chem. Soc., 127 [20] 7480-88 (2005). https://doi.org/10.1021/ja042939g
  61. K. H. Lee, J. H. Lee, H. D. Kang, B. Park, Y. Kwon, H. Ko, C. Lee, J. Lee, and H. Yang, "Over 40 cd/A Efficient Green Quantum Dot Electroluminescent Device Comprising Uniquely Large-Sized Quantum Dots," ACS Nano, 8 [5] 4893-901 (2014). https://doi.org/10.1021/nn500852g
  62. M. Green, "Solution Routes to III-V Semiconductor Quantum Dots," Curr. Opin. Solid State Mater. Sci., 6 [4] 355-63 (2002). https://doi.org/10.1016/S1359-0286(02)00028-1
  63. M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, "Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots," Chem. Mater., 27 [13] 4893-98 (2015). https://doi.org/10.1021/acs.chemmater.5b02138
  64. J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, "High-Efficiency Red Electroluminescent Device Based on Multishelled InP Quantum Dots," Opt. Lett., 41 [17] 3984-7 (2016). https://doi.org/10.1364/OL.41.003984
  65. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, "Cadmium-Free InP/ ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m-2," Small, 13 [13] 1603962 (2017). https://doi.org/10.1002/smll.201603962
  66. K. Kim, H. Lee, J. Ahn, and S. Jeong, "Highly Luminescing Multi-Shell Semiconductor Nanocrystals InP/ZnSe/ ZnS," Appl. Phys. Lett., 101 [7] 073107 (2012). https://doi.org/10.1063/1.4745844
  67. S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, "Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes," J. Am. Chem. Soc., 134 [8] 3804-9 (2012). https://doi.org/10.1021/ja210211z
  68. F. Pietra, N. Kirkwood, L. De Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, and A. J. Houtepen, "Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-based Quantum Dots," Chem. Mater., 29 [12] 5192-9 (2017). https://doi.org/10.1021/acs.chemmater.7b00848
  69. S. Koh, T. Eom, W. D. Kim, K. Lee, D. Lee, Y. K. Lee, H. Kim, W. K. Bae, and D. C. Lee, "Zinc-Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots," Chem. Mater., 29 [15] 6346-55 (2017). https://doi.org/10.1021/acs.chemmater.7b01648
  70. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, "Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots," ACS Nano, 7 [10] 9019-26 (2013). https://doi.org/10.1021/nn403594j
  71. X. Y. Yang, D. W. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. L. Zhao, H. V. Demir, and X. W. Sun, "Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes," Adv. Mater., 24 [30] 4180-5 (2012). https://doi.org/10.1002/adma.201104990
  72. T. Kim, S. W. Kim, M. Kang, and S. W. Kim, "Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller," J. Phys. Chem. Lett., 3 [2] 214-8 (2012). https://doi.org/10.1021/jz201605d
  73. E. Bang, Y. Choi, J. Cho, Y. H. Suh, H. W. Ban, J. S. Son, and J. Park, "Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor," Chem. Mater., 29 [10] 4236-43 (2017). https://doi.org/10.1021/acs.chemmater.7b00254
  74. K. Lim, H. S. Jang, and K. Woo, "Synthesis of Blue Emitting InP/ZnS Quantum Dots through Control of Competition between Etching and Growth," Nanotechnology, 23 [48] 485609 (2012). https://doi.org/10.1088/0957-4484/23/48/485609
  75. S. L. Lin, N. Pradhan, Y. J. Wang, and X. G. Peng, "High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors," Nano Lett., 4 [11] 2261-4 (2004). https://doi.org/10.1021/nl048650e
  76. P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, and A. Pron, "Luminescent ZnSe Nanocrystals of High Color Purity," Mater. Chem. Phys., 84 [1] 10-3 (2004). https://doi.org/10.1016/j.matchemphys.2003.11.002
  77. H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, "Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO," J. Phys. Chem. B, 108 [44] 17119-23 (2004). https://doi.org/10.1021/jp047035w
  78. M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O'Brien, "Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals," Chem. Mater., 27 [11] 3797-800 (2015). https://doi.org/10.1021/acs.chemmater.5b00347
  79. C. Y. Xiang, W. Koo, S. Chen, F. So, X. Liu, X. X. Kong, and Y. J. Wang, "Solution Processed Multilayer Cadmium-Free Blue/Violet Emitting Quantum Dots Light Emitting Diodes," Appl. Phys. Lett., 101 [5] 053303 (2012). https://doi.org/10.1063/1.4738375
  80. Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, "Cadmium-Free Quantum Dots Based Violet Light-Emitting Diodes: High-Efficiency and Brightness via Optimization of Organic Hole Transport Layers," Org. Electron., 25, 178-83 (2015). https://doi.org/10.1016/j.orgel.2015.06.032
  81. A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. S. Li, "Bright, Efficient, and Color-Stable Violet ZnSe-Based Quantum Dot Light-Emitting Diodes," Nanoscale, 7 [7] 2951-59 (2015). https://doi.org/10.1039/C4NR06593J
  82. B. H. Dong, L. X. Cao, G. Su, and W. Liu, "Facile Synthesis of Highly Luminescent UV-Blue Emitting ZnSe/ZnS Core/Shell Quantum Dots by a Two-Step Method," Chem. Commun., 46 [39] 7331-33 (2010). https://doi.org/10.1039/c0cc02042g
  83. F. Zhang, H. Z. Zhong, C. Chen, X. G. Wu, X. M. Hu, H. L. Huang, J. B. Han, B. S. Zou, and Y. P. Dong, "Brightly Luminescent and Color-Tunable Colloidal $CH_3NH_3PbX_3$ (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS Nano, 9 [4] 4533-42 (2015). https://doi.org/10.1021/acsnano.5b01154
  84. J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr, and O. F. Mohammed, "Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single-and Two-Photon-Induced Amplified Spontaneous Emission," J. Phys. Chem. Lett., 6 [24] 5027-33 (2015). https://doi.org/10.1021/acs.jpclett.5b02460
  85. F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, "Xray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water," ACS Nano, 10 [1] 1224-30 (2016). https://doi.org/10.1021/acsnano.5b06536
  86. H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, and R. S. Liu, "Mesoporous Silica Particles Integrated with All-Inorganic $CsPbBr_3$ Perovskite Quantum-Dot Nanocomposites (MPPQDs) with High Stability and Wide Color Gamut Used for Backlight Display," Angew. Chem. Int. Ed., 55 [28] 7924-29 (2016). https://doi.org/10.1002/anie.201603698
  87. A. F. Wang, X. G. Yan, M. Zhang, S. B. Sun, M. Yang, W. Shen, X. Q. Pan, P. Wang, and Z. T. Deng, "Controlled Synthesis of Lead-Free and Stable Perovskite Derivative $Cs_2SnI_6$ Nanocrystals via a Facile Hot-Injection Process," Chem. Mater., 28 [22] 8132-40 (2016). https://doi.org/10.1021/acs.chemmater.6b01329
  88. T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Bohm, "Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals," J. Am. Chem. Soc., 138 [9] 2941-44 (2016). https://doi.org/10.1021/jacs.5b13470
  89. H. W. Liu, Z. N. Wu, J. R. Shao, D. Yao, H. Gao, Y. Liu, W. L. Yu, H. Zhang, and B. Yang, "$CsPb_xMn_{1-x}Cl_3$ Perovskite Quantum Dots with High Mn Substitution Ratio," ACS Nano, 11 [2] 2239-47 (2017). https://doi.org/10.1021/acsnano.6b08747
  90. D. Y. Jo and H. Yang, "Synthesis of Highly White-Fluorescent Cu-Ga-S Quantum Dots for Solid-State Lighting Devices," Chem. Commun., 52 [4] 709-12 (2016). https://doi.org/10.1039/C5CC07968C
  91. W. S. Song, J. H. Kim, J. H. Lee, H. S. Lee, Y. R. Do, and H. Yang, "Synthesis of Color-Tunable Cu-In-Ga-S Solid Solution Quantum Dots with High Quantum Yields for Application to White Light-Emitting Diodes," J. Mater. Chem., 22 [41] 21901-8 (2012). https://doi.org/10.1039/c2jm35150a
  92. B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. S. Bando, S. Y. Yang, and B. S. Zou, "Highly Emissive and Color-Tunable $CuInS_2$-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance," Adv. Funct. Mater., 22 [10] 2081-88 (2012). https://doi.org/10.1002/adfm.201102496
  93. C. Y. Ji, M. Lu, H. Wu, X. Y. Zhang, X. Y. Shen, X. Wang, Y. Zhang, Y. D. Wang, and W. W. Yu, "1,2-Ethanedithiol Treatment for $AgIn_5S_8/ZnS$ Quantum Dot Light Emitting Diodes with High Brightness," ACS Appl. Mater. Interfaces, 9 [9] 8187-93 (2017). https://doi.org/10.1021/acsami.6b16238
  94. P. M. Allen and M. G. Bawendi, "Ternary I-III-VI Quantum Dots Luminescent in the Red to Near-Infrared," J. Am. Chem. Soc., 130 [29] 9240-41 (2008). https://doi.org/10.1021/ja8036349
  95. M. Ko, H. C. Yoon, H. Yoo, J. H. Oh, H. Yang, and Y. R. Do, "Highly Efficient Green Zn-Ag-In-S/Zn-In-S/ZnS QDs by a Strong Exothermic Reaction for Down-Converted Green and Tripackage White LEDs," Adv. Funct. Mater., 27 [4] 1602638 (2017). https://doi.org/10.1002/adfm.201602638
  96. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices," Nature, 420 [6917] 800-3 (2002). https://doi.org/10.1038/nature01217
  97. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, "Colloidal Quantum-Dot Light-Emitting Diodes with Metal-Oxide Charge Transport Layers," Nat. Photonics, 2 [4] 247-50 (2008). https://doi.org/10.1038/nphoton.2008.34
  98. L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, "Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution-Processed Multilayer Structures," Nat. Photonics, 5 [9] 543-48 (2011). https://doi.org/10.1038/nphoton.2011.171
  99. F. Garcia-Santamaria, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, "Breakdown of Volume Scaling in Auger Recombination in CdSe/CdS Heteronanocrystals: The Role of the Core Shell Interface," Nano Lett., 11 [2] 687-93 (2011). https://doi.org/10.1021/nl103801e
  100. W. K. Bae, L. A. Padilha, Y. S. Park, H. McDaniel, I. Robel, J. M. Pietryga, and V. I. Klimov, "Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination," ACS Nano, 7 [4] 3411-19 (2013). https://doi.org/10.1021/nn4002825
  101. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, "Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes," Nat. Commun., 4, 2661 (2013). https://doi.org/10.1038/ncomms3661
  102. F. T. Rabouw, R. Vaxenburg, A. A. Bakulin, R. J. A. van Dijk-Moes, H. J. Bakker, A. Rodina, E. Lifshitz, A. L. Efros, A. F. Koenderink, and D. Vanmaekelbergh, "Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots," ACS Nano, 9 [10] 10366-76 (2015). https://doi.org/10.1021/acsnano.5b04491
  103. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, " "Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking," J. Am. Chem. Soc., 130 [15] 5026-27 (2008). https://doi.org/10.1021/ja711379k
  104. K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, "Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices," ACS Nano, 7 [8] 7295-302 (2013). https://doi.org/10.1021/nn402870e
  105. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, "Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device," ACS Nano, 11 [2] 1982-90 (2017). https://doi.org/10.1021/acsnano.6b08142
  106. K. Ding, H. T. Chen, L. W. Fan, B. Wang, Z. Huang, S. Q. Zhuang, B. Hu, and L. Wang, "Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes," ACS Appl. Mater. Interfaces, 9 [23] 20231-38 (2017). https://doi.org/10.1021/acsami.7b04662
  107. Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, "Efficient Quantum Dot Light-Emitting Diodes with a $Zn_{0.85}Mg_{0.15}O$ Interfacial Modification Layer," Nanoscale, 9, 8962-69 (2017). https://doi.org/10.1039/C7NR02099F
  108. S. J. Wang, Y. M. Guo, D. D. Feng, L. Chen, Y. Fang, H. B. Shen, and Z. L. Du, "Bandgap Tunable $Zn_{1-x}Mg_xO$ Thin Films as Electron Transport Layers for High Performance Quantum Dot Light-Emitting Diodes," J. Mater. Chem. C, 5 [19] 4724-30 (2017). https://doi.org/10.1039/C7TC00453B
  109. Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, "High-Efficiency Light-Emitting Devices Based on Quantum Dots with Tailored Nanostructures," Nat. Photonics, 9 [4] 259-66 (2015). https://doi.org/10.1038/nphoton.2015.36
  110. H. B. Shen, W. R. Cao, N. T. Shewmon, C. C. Yang, L. S. Li, and J. G. Xue, "High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes," Nano Lett., 15 [2] 1211-16 (2015). https://doi.org/10.1021/nl504328f
  111. Z. H. Li, Y. X. Hu, H. B. Shen, Q. L. Lin, L. Wang, H. Z. Wang, W. L. Zhao, and L. S. Li, "Efficient and Long-Life Green Light-Emitting Diodes Comprising Tridentate Thiol Capped Quantum Dots," Laser Photonics Rev., 11 [1] 1600227 (2017). https://doi.org/10.1002/lpor.201600227
  112. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, "High-Efficiency Quantum-Dot Light-Emitting Devices with Enhanced Charge Injection," Nat. Photonics, 7 [5] 407-12 (2013). https://doi.org/10.1038/nphoton.2013.70
  113. W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, "R/G/B/Natural White Light Thin Colloidal Quantum Dot-Based Light-Emitting Devices," Adv. Mater., 26 [37] 6387-93 (2014). https://doi.org/10.1002/adma.201400139
  114. W. Y. Ji, P. T. Jing, W. Xu, X. Yuan, Y. J. Wang, J. L. Zhao, and A. K. Y. Jen, "High Color Purity ZnSe/ZnS Core/Shell Quantum Dot Based Blue Light Emitting Diodes with an Inverted Device Structure," Appl. Phys. Lett., 103 [5] 053106 (2013). https://doi.org/10.1063/1.4817086
  115. W. Y. Ji, P. T. Jing, Y. Fan, J. L. Zhao, Y. J. Wang, and X. G. Kong, "Cadmium-Free Quantum Dot Light Emitting Devices: Energy-Transfer Realizing Pure Blue Emission," Opt. Lett., 38 [1] 7-9 (2013). https://doi.org/10.1364/OL.38.000007
  116. J. Xing, F. Yan, Y. W. Zhao, S. Chen, H. K. Yu, Q. Zhang, R. G. Zeng, H. V. Demir, X. W. Sun, A. Huan, and Q. H. Xiong, "High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles," ACS Nano, 10 [7] 6623-30 (2016). https://doi.org/10.1021/acsnano.6b01540
  117. J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, and H. B. Zeng, "Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)," Adv. Mater., 27 [44] 7162-67 (2015). https://doi.org/10.1002/adma.201502567
  118. G. R. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Pena, S. C. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, and Z. K. Tan, "Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method," Adv. Mater., 28 [18] 3528-34 (2016). https://doi.org/10.1002/adma.201600064
  119. X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, "Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer," Nano Lett., 16 [2] 1415-20 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
  120. J. Pan, L. N. Quan, Y. B. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. J. Yuan, L. Sinatra, N. M. Alyami, J. K. Liu, E. Yassitepe, Z. Y. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, and O. M. Bakr, "Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering," Adv. Mater., 28 [39] 8718-25 (2016). https://doi.org/10.1002/adma.201600784
  121. X. L. Zhang, H. Liu, W. G. Wang, J. B. Zhang, B. Xu, K. L. Karen, Y. J. Zheng, S. Liu, S. M. Chen, K. Wang, and X. W. Sun, "Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic-Inorganic Mixed Cations," Adv. Mater., 29 [18] 1606405 (2017). https://doi.org/10.1002/adma.201606405
  122. J. H. Li, L. M. Xu, T. Wang, J. Z. Song, J. W. Chen, J. Xue, Y. H. Dong, B. Cai, Q. S. Shan, B. N. Han, and H. B. Zeng, "50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite $CsPbBr_3$ QLEDs via Surface Ligand Density Control," Adv. Mater., 29 [5] 1603885 (2017). https://doi.org/10.1002/adma.201603885
  123. T. Chiba, K. Hoshi, Y. J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata, and J. Kido, "High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment," Acs Appl. Mater. Interfaces, 9 [21] 18054-60 (2017). https://doi.org/10.1021/acsami.7b03382
  124. Y. Zhang, C. A. Xie, H. P. Su, J. Liu, S. Pickering, Y. Q. Wang, W. W. Yu, J. K. Wang, Y. D. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. A. Xu, "Employing Heavy Metal-Free Colloidal Quantum Dots in Solution-Processed White Light-Emitting Diodes," Nano Lett., 11 [2] 329-32 (2011). https://doi.org/10.1021/nl1021442
  125. J.-H. Kim, K.-H. Lee, D.-Y. Jo, Y. Lee, J. Y. Hwang, and H. Yang, "Cu-In-Ga-S Quantum Dot Composition-Dependent Device Performance of Electrically Driven Light-Emitting Diodes," Appl. Phys. Lett., 105 [13] 133104 (2014). https://doi.org/10.1063/1.4896911
  126. J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, "Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer," Chem. Mater., 27 [1] 197-204 (2015). https://doi.org/10.1021/cm503756q
  127. J. H. Kim and H. Yang, "High-Efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding 7%," Chem. Mater., 28 [17] 6329-35 (2016). https://doi.org/10.1021/acs.chemmater.6b02669
  128. J. H. Kim, D. Y. Jo, K. H. Lee, E. P. Jang, C. Y. Han, J. H. Jo, and H. Yang, "White Electroluminescent Lighting Device Based on a Single Quantum Dot Emitter," Adv. Mater., 28 [25] 5093-98 (2016). https://doi.org/10.1002/adma.201600815
  129. D. B. Choi, S. Kim, H. C. Yoon, M. Ko, H. Yang, and Y. R. Do, "Color-Tunable Ag-In-Zn-S Quantum-Dot Light-Emitting Devices Realizing Green, Yellow and Amber Emissions," J. Mater. Chem. C, 5 [4] 953-59 (2017). https://doi.org/10.1039/C6TC04798J
  130. Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, "Hydroxyl-Terminated CuInS2 Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes," Chem. Mater., 28 [4] 1085-91 (2016). https://doi.org/10.1021/acs.chemmater.5b04480
  131. Y. Liu, F. Li, Z. Xu, C. Zheng, T. Guo, X. Xie, L. Qian, D. Fu, and X. Yan, "Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Ink-jet Printing Technique," Acs Appl. Mater. Interfaces, 9 [30] 25506-12 (2017). https://doi.org/10.1021/acsami.7b05381
  132. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, "Wearable Red-Green-Blue Quantum Dot Light-Emitting Diode Array Using High-Resolution Intaglio Transfer Printing," Nat. Commun., 6, 7149 (2015). https://doi.org/10.1038/ncomms8149
  133. C. Y. Han, K. H. Lee, M. S. Kim, J. W. Shin, J. S. Kim, J. H. Hwang, T. Kim, M. S. Oh, J. Kim, Y. R. Do, and H. Yang, "Solution-Processed Fabrication of Highly Transparent Mono-and Tri-Colored Quantum Dot-Light-Emitting Diodes," Org. Electron., 45, 145-50 (2017). https://doi.org/10.1016/j.orgel.2017.03.012
  134. P. T. Jing, W. Y. Ji, Q. H. Zeng, D. Li, S. N. Qu, J. Wang, and D. D. Zhang, "Vacuum-Free Transparent Quantum Dot Light-Emitting Diodes with Silver Nanowire Cathode," Sci. Rep., 5, 12499 (2015). https://doi.org/10.1038/srep12499

Cited by

  1. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes vol.6, pp.41, 2018, https://doi.org/10.1039/C8TC04028A
  2. Micro-Cavity Effect of ZnO/Ag/ZnO Multilayers on Green Quantum Dot Light-Emitting Diodes vol.55, pp.2, 2018, https://doi.org/10.4191/kcers.2018.55.2.09
  3. Quantum Dot Light-Emitting Diodes Employing Phosphorescent Organic Molecules as Double Emission Layers pp.2093-6788, 2019, https://doi.org/10.1007/s13391-019-00126-x
  4. Nanostructured colloidal quantum dots for efficient electroluminescence devices vol.36, pp.2, 2019, https://doi.org/10.1007/s11814-018-0193-7
  5. Tunable Emission of Bluish Zn-Cu-Ga-S Quantum Dots by Mn Doping and Their Electroluminescence vol.11, pp.8, 2019, https://doi.org/10.1021/acsami.8b20894
  6. Systematic and Extensive Emission Tuning of Highly Efficient Cu-In-S-Based Quantum Dots from Visible to Near Infrared vol.31, pp.7, 2017, https://doi.org/10.1021/acs.chemmater.9b00550
  7. Hybrid Quantum Dot Light-Emitting Diodes for White Emission Using Blue Phosphorescent Organic Molecules and Red Quantum Dots vol.10, pp.9, 2019, https://doi.org/10.3390/mi10090609
  8. Efficient Cadmium-Free Inverted Red Quantum Dot Light-Emitting Diodes vol.11, pp.40, 2019, https://doi.org/10.1021/acsami.9b12514
  9. Correlation between the Morphology of ZnO Layers and the Electroluminescence of Quantum Dot Light-Emitting Diodes vol.9, pp.21, 2017, https://doi.org/10.3390/app9214539
  10. Recent Progress in High-Luminance Quantum Dot Light-Emitting Diodes vol.4, pp.3, 2017, https://doi.org/10.3807/copp.2020.4.3.161
  11. Effect of Air Exposure of ZnMgO Nanoparticle Electron Transport Layer on Efficiency of Quantum-Dot Light-Emitting Diodes vol.13, pp.17, 2017, https://doi.org/10.1021/acsami.1c01898
  12. 31.2: Invited Paper: High Efficiency Red and Green InP‐Quantum Dot Light‐Emitting Diodes vol.52, pp.suppl2, 2017, https://doi.org/10.1002/sdtp.15144
  13. Highly Efficient and Controllable Methodology of the Cd0.25Zn0.75Se/ZnS Core/Shell Quantum Dots Synthesis vol.11, pp.10, 2017, https://doi.org/10.3390/nano11102616
  14. Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission vol.5, pp.1, 2021, https://doi.org/10.1038/s41528-021-00106-y
  15. Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium vol.2, pp.4, 2017, https://doi.org/10.1063/5.0058992
  16. Enhanced charge balance with antibiotics in both electron and hole transport layers of InP/ZnSexS1-x/ZnS-based quantum dot light-emitting diodes vol.900, pp.None, 2022, https://doi.org/10.1016/j.jallcom.2021.163449