DOI QR코드

DOI QR Code

Designing Signal Peptides for Efficient Periplasmic Expression of Human Growth Hormone in Escherichia coli

  • Jeiranikhameneh, Meisam (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)) ;
  • Moshiri, Farzaneh (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)) ;
  • Falasafi, Soheil Keyhan (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)) ;
  • Zomorodipour, Alireza (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB))
  • Received : 2017.05.02
  • Accepted : 2017.08.28
  • Published : 2017.11.28

Abstract

The secretion efficiency of a protein in a Sec-type secretion system is mainly determined by an N-terminal signal peptide and its combination with its cognate protein. Five signal peptides, namely, two synthetic Sec-type and three Bacillus licheniformis alpha-amylase-derived signal peptides, were compared for periplasmic expression of the human growth hormone (hGH) in E. coli. Based on in silico predictions on the signal peptides' cleavage efficiencies and their corresponding mRNA secondary structures, a number of amino acid substitutions and silent mutations were considered in the modified signal sequences. The two synthetic signal peptides, specifically designed for hGH secretion in E. coli, differ in their N-terminal positively charged residues and hydrophobic region lengths. According to the mRNA secondary structure predictions, combinations of the protein and each of the five signal sequences could lead to different outcomes, especially when accessibility of the initiator ATG and ribosome binding sites were considered. In the experimental stage, the two synthetic signal peptides displayed complete processing and resulted in efficient secretion of the mature hGH in periplasmic regions, as was demonstrated by protein analysis. The three alpha-amylase-derived signal peptides, however, were processed partially from their precursors. Therefore, to achieve efficient secretion of a protein in a heterologous system, designing a specific signal peptide by using a combined approach of optimizations of the mRNA secondary structure and the signal peptide H-domain and cleavage site is recommended.

Keywords

References

  1. Jorgensen KD. 1987. Comparison of the pharmacological properties of pituitary and biosynthetic human growth hormone. Demonstration of antinatriuretic/antidiuretic and barbital sleep effects of human growth hormone in rats. Acta Endocrinol. (Copenh.) 114: 124-131.
  2. Hindmarsh PC, Brook CG. 1987. Effect of growth hormone on short normal children. Br. Med. J. (Clin. Res. Ed.) 295:573-577. https://doi.org/10.1136/bmj.295.6598.573
  3. Hsiung HM, Cantrell A, Luirink J, Oudega B, Veros AJ, Becker GW. 1989. Use of bacteriocin release protein in E. coli for excretion of human growth hormone into the culture medium. Nat. Biotechnol. 7: 267-271. https://doi.org/10.1038/nbt0389-267
  4. Becker GW, Hsiung HM. 1986. Expression, secretion and folding of human growth hormone in Escherichia coli. Purification and characterization. FEBS Lett. 204: 145-150. https://doi.org/10.1016/0014-5793(86)81403-X
  5. Mukhija R, Rupa P, Pillai D, Garg LC. 1995. High-level production and one-step purification of biologically active human growth hormone in Escherichia coli. Gene 165: 303-306. https://doi.org/10.1016/0378-1119(95)00525-B
  6. Ghorpade A, Garg LC. 1993. Efficient processing and export of human growth hormone by heat labile enterotoxin chain B signal sequence. FEBS Lett. 330: 61-65. https://doi.org/10.1016/0014-5793(93)80920-P
  7. Massa G, Vanderschueren-Lodeweyckx M, Bouillon R. 1993. Five-year follow-up of growth hormone antibodies in growth hormone deficient children treated with recombinant human growth hormone. Clin. Endocrinol. (Oxf.) 38: 137-142. https://doi.org/10.1111/j.1365-2265.1993.tb00985.x
  8. Ahangari G, Ostadali MR, Rabani A, Rashidian J, Sanati MH, Zarindast MR. 2004. Growth hormone antibodies formation in patients treated with recombinant human growth hormone. Int. J. Immunopathol. Pharmacol. 17: 33-38. https://doi.org/10.1177/039463200401700105
  9. Kipriyanov SM, Moldenhauer G, Little M. 1997. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200: 69-77. https://doi.org/10.1016/S0022-1759(96)00188-3
  10. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538.
  11. Nakazawa K, Takano T, Sohma A, Yamane K. 1986. Secretion activities of Bacillus subtilis alpha-amylase signal peptides of different lengths in Escherichia coli cells. Biochem. Biophys. Res. Commun. 134: 624-631. https://doi.org/10.1016/S0006-291X(86)80465-X
  12. Nakamura K, Fujita Y, Itoh Y, Yamane K. 1989. Modification of length, hydrophobic properties and electric charge of Bacillus subtilis alpha-amylase signal peptide and their different effects on the production of secretory proteins in B. subtilis and Escherichia coli cells. Mol. Gen. Genet. 216: 1-9. https://doi.org/10.1007/BF00332223
  13. Suominen I, Meyer P, Tilgmann C, Glumoff T, Glumoff V, Kapyla J, et al. 1995. Effects of signal peptide mutations on processing of Bacillus stearothermophilus alpha-amylase in Escherichia coli. Microbiology 141: 649-654. https://doi.org/10.1099/13500872-141-3-649
  14. Kiany J, Zomorodipour A, Ahmadzadeh Raji M, Sanati MH. 2003. Construction of recombinant plasmids for periplasmic expression of human growth hormone in Escherichia coli under T7 and lac promoters. J. Sci. Islam. Repub. 14: 311-316.
  15. Ghasemi F, Zomorodipour A, Shojai S, Ataei F, Khodabandeh M, Sanati MH. 2004. Using L-arabinose for production of human growth hormone in Escherichia coli, studying the processing of gIII:: hGH precursor. Iran. J. Biotechnol. 2: 250-260.
  16. Chung BH, Sohn M-J, Oh S-W, Park U-S, Poo H, Kim BS, et al. 1998. Overproduction of human granulocyte-colony stimulating factor fused to the pelB signal peptide in Escherichia coli. J. Ferment. Bioeng. 85: 443-446. https://doi.org/10.1016/S0922-338X(98)80092-5
  17. Sockolosky JT, Szoka FC. 2013. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr. Purif. 87: 129-135. https://doi.org/10.1016/j.pep.2012.11.002
  18. Berges H, Joseph-Liauzun E, Fayet O. 1996. Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli. Appl. Environ. Microbiol. 62: 55-60.
  19. Le Calvez H, Green JM, Baty D. 1996. Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate PelB signal sequence. Gene 170: 51-55. https://doi.org/10.1016/0378-1119(95)00850-0
  20. Denefle P, Kovarik S, Ciora T, Gosselet N, Benichou JC, Latta M, et al. 1989. Heterologous protein export in Escherichia coli: influence of bacterial signal peptides on the export of human interleukin 1 beta. Gene 85: 499-510. https://doi.org/10.1016/0378-1119(89)90444-7
  21. Cheah KC, Harrison S, King R, Crocker L, Wells JR, Robins A. 1994. Secretion of eukaryotic growth hormones in Escherichia coli is influenced by the sequence of the mature proteins. Gene 138: 9-15. https://doi.org/10.1016/0378-1119(94)90777-3
  22. Jana S, Deb JK. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289-298. https://doi.org/10.1007/s00253-004-1814-0
  23. Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500. https://doi.org/10.1016/0958-1669(95)80082-4
  24. Zhang W, Xiao W, Wei H, Zhang J, Tian Z. 2006. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem. Biophys. Res. Commun. 349: 69-78. https://doi.org/10.1016/j.bbrc.2006.07.209
  25. Duffaud G, Inouye M. 1988. Signal peptidases recognize a structural feature at the cleavage site of secretory proteins. J. Biol. Chem. 263: 10224-10228.
  26. Shahhoseini M, Ziaee AA, Ghaemi N. 2003. Expression and secretion of an alpha-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J. Appl. Microbiol. 95:1250-1254. https://doi.org/10.1046/j.1365-2672.2003.02082.x
  27. Nilsson I, von Heijne G. 1991. A de novo designed signal peptide cleavage cassette functions in vivo. J. Biol. Chem. 266: 3408-3410.
  28. Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA. 1998. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J. Mol. Biol. 277: 859-870. https://doi.org/10.1006/jmbi.1997.1617
  29. Das S, Paul S, Chatterjee S, Dutta C. 2005. Codon and amino acid usage in two major human pathogens of genus Bartonella - optimization between replicational-transcriptional selection, translational control and cost minimization. DNA Res. 12:91-102. https://doi.org/10.1093/dnares/12.2.91
  30. Ramachandiran V, Kramer G, Hardesty B. 2000. Expression of different coding sequences in cell-free bacterial and eukaryotic systems indicates translational pausing on Escherichia coli ribosomes. FEBS Lett. 482: 185-188. https://doi.org/10.1016/S0014-5793(00)02017-2
  31. McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF. 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr. Purif. 27: 365-374. https://doi.org/10.1016/S1046-5928(02)00610-1
  32. Mattanovich D, Kramer W, Luttich C, Weik R, Bayer K, Katinger H. 1998. Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol. Bioeng. 58: 296-298. https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<296::AID-BIT26>3.0.CO;2-9
  33. Marston FA. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1-12. https://doi.org/10.1042/bj2400001
  34. Hoang TT, Ma Y, Stern RJ, McNeil MR, Schweizer HP. 1999. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: purification of Mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene 237: 361-371. https://doi.org/10.1016/S0378-1119(99)00331-5
  35. Neubauer P, Hofmann K, Holst O, Mattiasson B, Kruschke P. 1992. Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl. Microbiol. Biotechnol. 36: 739-744.
  36. Gombert AK, Kilikian BV. 1998. Recombinant gene expression in Escherichia coli cultivation using lactose as inducer. J. Biotechnol. 60: 47-54. https://doi.org/10.1016/S0168-1656(97)00185-5
  37. Curless CE, Pope J, Loredo L, Tsai LB. 1994. Effect of preinduction specific growth rate on secretion of granulocyte macrophage colony stimulating factor by Escherichia coli. Biotechnol. Prog. 10: 467-471. https://doi.org/10.1021/bp00029a003
  38. Driessen AJ, Fekkes P, van der Wolk JP. 1998. The Sec system. Curr. Opin. Microbiol. 1: 216-222. https://doi.org/10.1016/S1369-5274(98)80014-3
  39. Martoglio B, Dobberstein B. 1998. Signal sequences: more than just greasy peptides. Trends Cell Biol. 8: 410-415. https://doi.org/10.1016/S0962-8924(98)01360-9
  40. Klinkert B, Elles I, Nickelsen J. 2006. Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Res. 34: 386-394. https://doi.org/10.1093/nar/gkj433
  41. Pandey JP, Gorla P, Manavathi B, Siddavattam D. 2009. mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli. Mol. Biol. Rep. 36: 449-454. https://doi.org/10.1007/s11033-007-9200-5
  42. Paulus M, Haslbeck M, Watzele M. 2004. RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Res. 32: e78. https://doi.org/10.1093/nar/gnh076
  43. Chang JT, Green CB, Wolf RE Jr. 1995. Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence. J. Bacteriol. 177: 6560-6567. https://doi.org/10.1128/jb.177.22.6560-6567.1995
  44. Brunel C, Romby P, Sacerdot C, de Smit M, Graffe M, Dondon J, et al. 1995. Stabilised secondary structure at a ribosomal binding site enhances translational repression in E. coli. J. Mol. Biol. 253: 277-290. https://doi.org/10.1006/jmbi.1995.0552
  45. Ma CK, Kolesnikow T, Rayner JC, Simons EL, Yim H, Simons RW. 1994. Control of translation by mRNA secondary structure: the importance of the kinetics of structure formation. Mol. Microbiol. 14: 1033-1047. https://doi.org/10.1111/j.1365-2958.1994.tb01337.x
  46. de Smit MH, van Duin J. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150. https://doi.org/10.1006/jmbi.1994.1714
  47. Nielsen H, Brunak S, von Heijne G. 1999. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12: 3-9. https://doi.org/10.1093/protein/12.1.3
  48. Hiller K, Grote A, Scheer M, Munch R, Jahn D. 2004. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32: W375-W379. https://doi.org/10.1093/nar/gkh378
  49. Claros MG, von Heijne G. 1994. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10: 685-686.
  50. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. https://doi.org/10.1093/nar/gkg595
  51. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. 1994. Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125: 167-188. https://doi.org/10.1007/BF00818163
  52. Sambrook J, Russell D. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  53. Libby RT, Braedt G, Kronheim SR, March CJ, Urdal DL, Chiaverotti TA, et al. 1987. Expression and purification of native human granulocyte-macrophage colony-stimulating factor from an Escherichia coli secretion vector. DNA 6: 221-229. https://doi.org/10.1089/dna.1987.6.221
  54. Jeiranikhameneh M, Razavi MR, Irani S, Siadat SD, Oloomi M. 2017. Designing novel construction for cell surface display of protein E on Escherichia coli using non-classical pathway based on Lpp-OmpA. AMB Express 7: 53. https://doi.org/10.1186/s13568-017-0350-0
  55. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0

Cited by

  1. Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli vol.102, pp.17, 2017, https://doi.org/10.1007/s00253-018-9163-6
  2. Experimental Evaluation of In Silico Selected Signal Peptides for Secretory Expression of Erwinia Asparaginase in Escherichia coli vol.26, pp.3, 2017, https://doi.org/10.1007/s10989-019-09961-w
  3. Comparison of Different Signal Sequences to Use for Periplasmic Over-Expression of Buforin I in Escherichia coli: An In Silico Study vol.26, pp.4, 2020, https://doi.org/10.1007/s10989-020-10042-6
  4. Enhanced Extracellular Production of IsPETase in Escherichia coli via Engineering of the pelB Signal Peptide vol.69, pp.7, 2021, https://doi.org/10.1021/acs.jafc.0c07469