DOI QR코드

DOI QR Code

An Aptamer-Based Electrochemical Sensor That Can Distinguish Influenza Virus Subtype H1 from H5

  • Lee, Jin-Moo (Department of Applied Chemistry, Kookmin University) ;
  • Kim, JunWon (Department of Applied Chemistry, Kookmin University) ;
  • Ryu, Ilhwan (Department of Applied Chemistry, Kookmin University) ;
  • Woo, Hye-Min (Department of Applied Chemistry, Kookmin University) ;
  • Lee, Tae Gyun (Department of Applied Chemistry, Kookmin University) ;
  • Jung, Woong (Department of Emergency Medicine, Kyung Hee University Hospital at Gangdong) ;
  • Yim, Sanggyu (Department of Applied Chemistry, Kookmin University) ;
  • Jeong, Yong-Joo (Department of Applied Chemistry, Kookmin University)
  • Received : 2017.08.08
  • Accepted : 2017.09.05
  • Published : 2017.11.28

Abstract

The surface protein hemagglutinin (HA) mediates the attachment of influenza virus to host cells containing sialic acid and thus facilitates viral infection. Therefore, HA is considered as a good target for the development of diagnostic tools for influenza virus. Previously, we reported the isolation of single-stranded aptamers that can distinguish influenza subtype H1 from H5. In this study, we describe a method for the selective electrical detection of H1 using the isolated aptamer as a molecular probe. After immobilization of the aptamer on Si wafer, enzyme-linked immunosorbent assay (ELISA) and field emission scanning electron microscopy (FE-SEM) showed that the immobilized aptamer bound specifically to the H1 subtype but not to the H5 subtype. Assessment by cyclic voltammetry (CV) also demonstrated that the immobilized aptamer on the indium thin oxide-coated surface was specifically bound to the H1 subtype only, which was consistent with the ELISA and FE-SEM results. Further measurement of CV using various amounts of H1 subtype provided the detection limit of the immobilized aptamer, which showed that a nanomolar scale of target protein was sufficient to produce the signal. These results indicated that the selected aptamer can be an effective probe for distinguishing the subtypes of influenza viruses by monitoring current changes.

Keywords

References

  1. Deng YM, Caldwell N, Barr IG. 2011. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing. PLoS One 6: e23400. https://doi.org/10.1371/journal.pone.0023400
  2. Gamblin SJ, Skehel JJ. 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J. Biol. Chem. 285:28403-28409. https://doi.org/10.1074/jbc.R110.129809
  3. Sauer AK, Liang CH, Stech J, Peeters B, Quere P, Schwegmann-Wessels C, et al. 2014. Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLoS One 9: e89529. https://doi.org/10.1371/journal.pone.0089529
  4. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. 2013. New world bats harbor diverse influenza A viruses. PLoS Pathog. 9: e1003657. https://doi.org/10.1371/journal.ppat.1003657
  5. Wang W, DeFeo CJ, Alvarado-Facundo E, Vassell R, Weiss CD. 2015. Intermonomer interactions in hemagglutinin subunits HA1 and HA2 affecting hemagglutinin stability and influenza virus infectivity. J. Virol. 89: 10602-10611. https://doi.org/10.1128/JVI.00939-15
  6. Skehel JJ, Wiley DC. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69: 531-569. https://doi.org/10.1146/annurev.biochem.69.1.531
  7. Hamilton BS, Whittaker GR, Daniel S. 2012. Influenza virusmediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4: 1144-1168. https://doi.org/10.3390/v4071144
  8. Luo G, Colonno R, Krystal M. 1996. Characterization of a hemagglutinin-specific inhibitor of influenza A virus. Virology 226: 66-76. https://doi.org/10.1006/viro.1996.0628
  9. Watcharatanyatip K, Boonmoh S, Chaichoun K, Songserm T, Woratanti M, Dharakul T. 2010. Multispecies detection of antibodies to influenza A viruses by a double-antigen sandwich ELISA. J. Virol. Methods 163: 238-243. https://doi.org/10.1016/j.jviromet.2009.09.027
  10. Velumani S, Ho HT, He F, Musthaq S, Prabakaran M, Kwang J. 2011. A novel peptide ELISA for universal detection of antibodies to human H5N1 influenza viruses. PLoS One 6: e20737. https://doi.org/10.1371/journal.pone.0020737
  11. Lee BW, Bey RF, Baarsch MJ, Simonson RR. 1993. ELISA method for detection of influenza A infection in swine. J. Vet. Diagn. Invest. 5: 510-515. https://doi.org/10.1177/104063879300500402
  12. He Q, Velumani S, Du Q, Lim CW, Ng FK, Donis R, et al. 2007. Detection of H5 avian influenza viruses by antigencapture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin. Vaccine Immunol. 14: 617-623. https://doi.org/10.1128/CVI.00444-06
  13. Cherian T, Bobo L, Steinhoff MC, Karron RA, Yolken RH. 1994. Use of PCR-enzyme immunoassay for identification of influenza A virus matrix RNA in clinical samples negative for cultivable virus. J. Clin. Microbiol. 32: 623-628.
  14. Payungporn S, Chutinimitkul S, Chaisingh A, Damrongwantanapokin S, Buranathai C, Amonsin A, et al. 2006. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J. Virol. Methods 131: 143-147. https://doi.org/10.1016/j.jviromet.2005.08.004
  15. Poon LL, Chan KH, Smith GJ, Leung CS, Guan Y, Yuen KY, et al. 2009. Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT-PCR assays. Clin. Chem. 55: 1555-1558. https://doi.org/10.1373/clinchem.2009.130229
  16. Stone B, Burrows J, Schepetiuk S, Higgins G, Hampson A, Shaw R, et al. 2004. Rapid detection and simultaneous subtype differentiation of influenza A viruses by real time PCR. J. Virol. Methods 117: 103-112. https://doi.org/10.1016/j.jviromet.2003.12.005
  17. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505-510. https://doi.org/10.1126/science.2200121
  18. Stoltenburg R, Reinemann C, Strehlitz B. 2007. SELEX - a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24: 381-403. https://doi.org/10.1016/j.bioeng.2007.06.001
  19. Woo HM, Lee JM, Yim S, Jeong YJ. 2015. Isolation of singlestranded DNA aptamers that distinguish influenza virus hemagglutinin subtype H1 from H5. PLoS One 10: e0125060. https://doi.org/10.1371/journal.pone.0125060
  20. Balamurugan S, Obubuafo A, Soper SA, Spivak DA. 2008. Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 390: 1009-1021. https://doi.org/10.1007/s00216-007-1587-2
  21. Kaczmarek D. 1997. The method of increasing COMPO contrast by linearization of backscattering characteristic eta = f(Z). Scanning 19: 310-315.
  22. Morga M, Adamczyk Z, Ocwieja M, Bielanska E. 2014. Hematite/silver nanoparticle bilayers on mica - AFM, SEM and streaming potential studies. J. Colloid Interface Sci. 424: 75-83. https://doi.org/10.1016/j.jcis.2014.03.005
  23. Arya SK, Datta M, Singh SP, Malhotra BD. 2007. Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane self-assembled monolayer. Anal. Bioanal. Chem. 389: 2235-2242. https://doi.org/10.1007/s00216-007-1655-7
  24. Zhang X, Wu N, Manno M, Leighton C, Vescovo E, Dowben PA. 2013. Resonant photoemission and spin polarization of $Co_{1-x}Fe_xS_2$. J. Phys. Condens. Matter 25: 012001. https://doi.org/10.1088/0953-8984/25/1/012001
  25. Samji T. 2009. Influenza A: understanding the viral life cycle. Yale J. Biol. Med. 82: 153-159.

Cited by

  1. Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I vol.28, pp.9, 2017, https://doi.org/10.4014/jmb.1808.08058
  2. Recent Progress and Opportunities for Nucleic Acid Aptamers vol.11, pp.3, 2021, https://doi.org/10.3390/life11030193
  3. Aptamers for Anti-Viral Therapeutics and Diagnostics vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084168