DOI QR코드

DOI QR Code

A Study on the Improvement of a Fleet Management System for Construction Equipment

건설장비 플릿관리 시스템 개선에 관한 연구

  • Kim, Sung-Keun (Seoul National University of Science and Technology) ;
  • Lim, So-Young (Seoul National University of Science and Technology)
  • 김성근 (서울과학기술대학교 건설시스템공학과) ;
  • 임소영 (서울과학기술대학교 건설시스템공학과)
  • Received : 2017.09.29
  • Accepted : 2017.10.23
  • Published : 2017.12.01

Abstract

To improve the productivity of the earthwork, a fleet management system for construction equipment was suggested in previous studies. But there were some gaps between theory and practice. To overcome this problem, some opinions are gathered form experts and field engineers and four improvements have been proposed and reflected in the system. First, the previous system consists of one hardware module, so it is hard to install it at a control office and construction equipment at the same time. The server module for the office and the mobile module for construction equipment are separately developed. Second, the transportation algorithm that is used in the previous system can generate shortest paths for the earthwork distribution, but embankment areas are not gathered. This situation leads to a decrease in compaction productivity. A modified algorithm for earthwork distribution is suggested. Third, the automated coordinate transformation is performed to show the position of construction equipment on the 3D terrain in real-time. Fourth, construction equipment groups should be formed in the initial stage of earthwork and the number of equipment of each groups should be changed by operation status and site environment. But this functions did not work properly in the previous system. This problem is corrected in the proposed system. The improvements can make the proposed system much more realistic one and can leads to an increase in the productivity of earthwork operations.

토공의 생산성을 향상시키기 위하여 선행 연구에서 건설장비 플릿관리 시스템이 제시되었다. 그러나 이론과 실제 사이에 차이가 존재하였다. 이러한 문제점을 극복하기 위하여 전문가와 엔지니어들의 의견을 구하여 네 가지 개선사항을 제시하고 기존의 시스템에 적용을 하였다. 첫 번째로, 기존의 시스템은 하나의 하드웨어로 구성되어 있어서 오피스와 건설장비에 동시에 설치하여 사용을 할 수 없었다. 따라서 오피스와 건설장비에 별도로 탑재하여 사용할 수 있도록 서버모듈과 모바일 모듈로 분리하여 개발을 하였다. 두 번째로, 기존의 시스템에 사용된 수송모델 알고리즘은 토량배분시 최소의 이동거리를 제시하지만 성토구역이 모여 있지 않게 계획이 됨으로써 생산성 저하를 가져오는 문제점이 있었다. 이러한 문제점을 해결하기 위한 개선된 알고리즘을 제시하였다. 세 번째로, 자동화된 좌표변환이 가능하게 함으로써 토공현장의 3D 지형도상에 실시간으로 건설장비의 위치가 나타나도록 개선하였다. 네 번째로, 토공작업 초반에 장비그룹이 형성되고 작업상태나 현장상황에 따라서 장비의 수가 변화해야 하는데 기존의 시스템에서는 이러한 기능이 적절하게 작동하지 않았다. 개선된 시스템에서는 이러한 문제점이 수정되었다. 이러한 개선사항들은 제시된 시스템을 더욱 현실적으로 적용 가능한 시스템으로 만들게 되며 궁극적으로 토공작업의 생산성 향상을 도모할 수 있게 할 것이다.

Keywords

References

  1. Ahn, S. H., Kim, S. K. and Lee, K. W. (2016). "Development of a fleet management system for cooperation among construction equipment." Journal of Korean Society of Civil Engineers, Vol. 36, No. 3, pp. 573-586 (in Korean). https://doi.org/10.12652/Ksce.2016.36.3.0573
  2. Baek, H. G., Kang, S. H. and Seo, J. W. (2015). "An earthwork districting model for large construction project." Journal of the Korean Society for Geospatial Information System, Vol. 35, No. 3, pp. 715-723 (in Korean).
  3. Burdett, R. L. and Kozan, E. (2014). "An integrated approach for earthwork allocation, sequencing and routing." European Journal of Operational Research, Vol. 238, No. 3, pp. 741-759. https://doi.org/10.1016/j.ejor.2014.04.036
  4. Easa, S. M. (1992). "Estimating earchwork volumes of curved roadways: mathematical model." Journal of Transportation Engineering, ASCE, Vol. 118, No. 6, pp. 834-849. https://doi.org/10.1061/(ASCE)0733-947X(1992)118:6(834)
  5. Easa, S. M. (1993). "Smooth boundary approximation for directly computing irregular area." Journal of Surveying Engineering, ASCE, Vol. 119, No. 3, pp. 86-101. https://doi.org/10.1061/(ASCE)0733-9453(1993)119:3(86)
  6. Easa, S. M. (1998). "Smooth surface approximation for computing pit excavation volume." Journal of Surveying Engineering, ASCE, Vol. 124, No. 3, pp. 125-133. https://doi.org/10.1061/(ASCE)0733-9453(1998)124:3(125)
  7. Kim, S. K. (2014). "A multi-agent based cooperation system for an intelligent earthwork." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 5, pp. 1609-1623 (in Korean). https://doi.org/10.12652/Ksce.2014.34.5.1609
  8. Kim, S. K., Seo, J. W. and Russell, J. S. (2012). "Intellgent navigntion strategis for automated earthwork system." Automation in Construction, Vol. 21, No. 1, pp. 132-147. https://doi.org/10.1016/j.autcon.2011.05.021
  9. Li, D. and Lu, M. (2017). "Automated generation of work breakdown structure and project network model for earthworks project planning: a flow network-based optimization approach." Journal of Construction Engineering and Management, Vol. 143, No. 1, 04016086. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001214
  10. US Department of Energy (2015). Berkeley lab promotes lowcorbon cities in china, Energy Analysis & Environmental Impacts Division News, Available at: http://eaei.lbl.gov/