DOI QR코드

DOI QR Code

Analysis of nested HTS magnets considering the magnitude and orientation of applied magnetic field

인가자장의 크기와 방향을 고려한 고온초전도 다중마그넷의 특성 해석

  • Received : 2017.08.03
  • Accepted : 2017.11.03
  • Published : 2017.11.30

Abstract

Most superconducting magnets which generate more than 20 T consist of nested magnets. A combination of LTS and HTS magnets is conventionally used, but high field magnets which use only HTS magnets have been developed recently. As HTS wires have very strong magnetic anisotropy, appropriate techniques should be used to consider this effect properly. The load line method has been conventionally used to design nested magnets for high field generation. Because this method considers only parallel and perpendicular magnetic fields, the effect of their orientation is not taken into account. In this paper, the actual orientation of the magnetic fields from 0 to 90 degrees is considered. The critical currents of the two kinds of high field nested magnets designed using the proposed method are calculated. The finite element method is used to calculate the distribution of the magnetic fields and the evolution strategy is used to find the critical current which maximizes the central magnetic field.

20T 이상의 높은 자장을 발생시키는 초전도마그넷은 다중 마그넷형태로 제작된다. 주로 저온초전도선재와 고온초전도선재를 혼합하여 제작되며 근래에는 고온초전도선재만을 이용하는 연구도활발하게 진행되고 있다. 고온초전도선재는 외부자계의 방향에 따라 임계상태가 달라지고 임계전류가 달라지는 자계이방성 성질을 가지고 있다. 따라서 고자장용 다중마그넷의 임계전류를 계산할 때에는 적절한 해석기법을 사용해야 한다. 기존에 사용되어왔던 고자장용 다중마그넷의 임계전류 계산방법은 대부분 수직 및 수평각도만을 고려한 부하선 기법이 사용되어왔다. 이 계산방법은 외부자계의 최대수직자장에 의해서 임계전류가 제한되기 때문에 수평자장의 영향이 잘 고려되지 않는 단점이 있다. 본 논문에서는 마그넷의 임계전류를 정밀하게 계산하기위하여 수직 및 수평각도뿐만 아니라 $0{\sim}90^{\circ}$ 사이 모든 각도의 $I_C-B({\Theta})$ 데이터를 고려하였다. 본 논문에서 제시한 해석기법을 사용하여 두 가지 고자장용 다중마그넷 모델을 해석하고 임계전류를 계산하였다. 마그넷에 인가되는 자계분포를 해석하기 위해 전자계수치해석 프로그램을 사용하였으며 진화론적 최적화 알고리즘을 사용하여 중심 자장이 최대로 되는 임계전류를 계산하였다.

Keywords

References

  1. Q. Wang, J. Liu, S. Song, G. Zhu, Y. Li, X. Hu, L. Yan, "High Temperature Superconducting YBCO Insert for 25 T Full Superconducting Magnet", IEEE Trans. Applied Superconductivity, vol. 25, no. 3, 4603505, June, 2015. DOI: https://doi.org/10.1109/TASC.2014.2365630
  2. W. D. Markiewicz, D. C. Larbalestier, H. W. Weijers, A. J. Voran, K. W. Pickard, W. R. Sheppard, J. Jaroszynski, A. Xu, R. P. Walsh, J. Lu, A. V. Gavrilin, P. D. Noyes, "Design of a Superconducting 32T Magnet With REBCO High Field Coils", IEEE Trans. Applied Superconductivity, vol. 22, no. 3, 4300704, June, 2012. DOI: https://doi.org/10.1109/TASC.2011.2174952
  3. S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn, S. Moon, "26 T 35 mm all-$GdBa_2Cu_3O_{7-x}$ multi-width no-insulation superconducting magnet", Superconductor Science and Technology, Vol. 29, no. 4, March, 2016. DOI: https://doi.org/10.1088/0953-2048/29/4/04LT04
  4. M. Kang, M. Koo, H. Lee, G. Cha, "Increment of the Central Magnetic Field of an YBCO Magnet by Using Multiple Power Sources", IEEE Trans. Applied Superconductivity, vol. 19, no. 3, pp. 1253-1256, June, 2009. DOI: https://doi.org/10.1109/TASC.2009.2017833
  5. M. Kang, Y. Kim, G. Cha K. Paik, H. Lee, "Characteristics of Magnets Depending on the Width of High Temperature Superconducting Tapes Applied to the Outer Pancake Windings", IEEE Trans. Applied Superconductivity, vol. 22, no. 3, 3900104, June, 2012. DOI: https://doi.org/10.1109/TASC.2011.2179690
  6. Y. Kim, M. Ku, G. Cha, S. Park, "Properties of High Temperature Superconducting Magnet With Optimized Air Gap Between Pancake Windings," IEEE Trans. Applied Superconductivity, vol. 21, no. 3, pp. 2267-2270, June, 2011. DOI: https://doi.org/10.1109/TASC.2010.2089034
  7. D. Turrioni, E. Barzi, M. J. Lamm, R. Yamada, A. V. Zlobin, A. Kikuchi, "Study of HTS Wires at High Magnetic Fields", IEEE Trans. Applied Superconductivity, vol. 19, no. 3, pp. 3057-3060, June, 2009. https://doi.org/10.1109/TASC.2009.2017877
  8. D. Turrionia, E. Barzia, M. Lamma, V. Lombardoa, C. Thiemeb, A. V. Zlobina, "Angular measurements of HTS critical current for high field solenoids", Advances in Cryogenic Engineering, AIP, vol. 54, pp. 451-458, 2008. DOI: https://doi.org/10.1063/1.2900382
  9. F. Borgnolutti, A. Badel, T. Benkel, X. Chaud, F. Debray, P. Fazilleau, T. Lecrevisse, P. Tixador, "Design Study of a 10-T REBCO Insert Solenoid", IEEE Trans. Applied Superconductivity, vol. 26, no. 4, June, 2016. DOI: https://doi.org/10.1109/TASC.2016.2518810
  10. J. Liu, S. Song, Q. Wang, Q. Zhang, "Critical Current Analysis of an YBCO Insert for Ultrahigh-Field All-Superconducting Magnet", IEEE Trans. Applied Superconductivity, vol. 26, no. 3, 4303405, April, 2016. DOI: https://doi.org/10.1109/TASC.2016.2532472
  11. M. Kasper, "Shape Optimization By Evolution Strategy", IEEE Trans. Magnetics, vol. 28, no. 2, pp. 1556-1560, March, 1992. DOI: https://doi.org/10.1109/20.123995
  12. J. Bascunan, S. Hahn, Y. Kim, J. Song, Y. Iwasa , "90-mm/18.8-T All-HTS Insert Magnet for 1.3 GHz LTS/HTS NMR Application: Magnet Design and Double-Pancake Coil Fabrication", IEEE Trans. Applied Superconductivity, vol. 24, no. 3, 4300904, June, 2014. DOI: https://doi.org/10.1109/TASC.2013.2285781
  13. Y. Iwasa, J. Bascunan, S. Hahn, J. Voccio, Y. Kim, T. Lecrevisse, J. Song, K. Kajikawa, "A High-Resolution 1.3-GHz/54-mm LTS/HTS NMR Magnet", IEEE Trans. Applied Superconductivity, vol. 25, no. 3, 4301205, June, 2015. DOI: https://doi.org/10.1109/TASC.2014.2363496
  14. J. Bascunan, S. Hahn, T. Lecrevisse, J. Song, D. Miyagi, Y. Iwasa, "An 800MHz all REBCO Insert for the 1.3GHz LTS/HTS NMR Magnet Program - A Progress Report", IEEE Trans. Applied Superconductivity, vol. 26, no. 4, 4300205, June, 2016. DOI: https://doi.org/10.1109/TASC.2015.2512045