DOI QR코드

DOI QR Code

Resonance Frequency Extraction of Full-scale Radar Targets Using Time-Frequency Analysis

시간-주파수 해석법을 이용한 실스케일 레이더 표적의 공진주파수 추출

  • 김인하 (한남대학교 전자공학과) ;
  • 최인식 (한남대학교 전자공학과)
  • Received : 2017.05.04
  • Accepted : 2017.06.29
  • Published : 2017.06.30

Abstract

The resonance frequency is observed in the late-time response of radar signal, and it is a unique frequency determined by the physical length of the target. In this paper, we conducted a simulation in the HF band of 0.2 ~ 28 MHz to observe the resonance frequency. First, the RCS(radar cross section) of four full-scale targets were obtained using RCS analysis tool FEKO. Then, results for resonance frequency extraction were compared and analyzed using the time-frequency analysis methods such as CWT(Continuous Wavelet Transform) and AWT(Adaptive Wavelet Transform). The radar structure was considered in the monostatic and bistatic $150^{\circ}$. By the comparison of the results, we can see that the resonance frequencies extracted from the two techniques are almost same, but the resolution in the time and frequency domain is better in the case of the AWT.

공진주파수(Resonance Frequency)는 레이더의 후기 시간 영역 신호에서 관찰 가능하며, 표적의 물리적인 길이에 의해서 나타나는 고유한 주파수이다. 본 논문에서는 0.2~28MHz의 HF(High Frequency) 대역에서 RCS(Radar Cross Section) 시뮬레이션을 진행하여 표적의 공진주파수를 관찰하였다. 전자파 해석 툴인 FEKO를 이용하여 총 4대의 실스케일 표적에 대한 RCS를 계산하였고, 공진주파수를 해석하기 위한 기법으로는 시간-주파수 해석법인 CWT(Continuous Wavelet Transform)와 AWT(Adaptive Wavelet Transform)를 사용하여 그 결과를 비교 및 분석하였다. 레이더 구조는 모노스태틱(Monostatic) 및 바이스태틱(Bistatic) $150^{\circ}$를 고려하였다. 분석 결과를 비교해 보면, 두 기법에서 추출되는 공진주파수는 대체로 비슷하였으나 해상도의 경우 AWT 기법이 시간 및 주파수 영역의 해상도가 더욱 좋은 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 한남대학교

References

  1. J. E. Mooney, Z. Ding, and L. S. Riggs, "Performance analysis of a GLRT automated target discrimination scheme", IEEE Trans. on Antennas and Propagation, Vol. 49, No. 12, pp. 1825-1835, Dec. 2001.
  2. E. Rothwell, D. P. Nyquist, K. M. Chen, and B. Drachman, "Radar target discrimination using the extinction-pulse technique", IEEE Trans. on Antennas and Propagation, Vol. 33, No. 9, pp. 929-937, Sep. 1985. https://doi.org/10.1109/TAP.1985.1143697
  3. I. S. Choi, "Scattering Analysis of Radar Target via Evolutionary Adaptive Wavelet Transform", Journal of KIMST, Vol. 10, No. 3, pp. 148-153, Sep. 2007.
  4. I. S. Choi, "Scattering Analysis of UWB radar signals Using Time-Frequency Transforms", Journal of KIIT, Vol. 7, No. 6, pp. 49-54, Dec, 2009.
  5. S. J. Lee and I. S. Choi, "Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS", Journal of KIEES, Vol. 21, No. 12, pp. 1460-1466, Dec. 2010.
  6. Tamara M. E. Nijsen, Ronald M, and Pierre J. M. Cluitmans, "Time-Frequency Analysis of Accelerometry Data for Detection of Myoclonic Seizures", IEEE Trans. on Information Technology in Biomedicine, Vol. 14, No. 5, pp. 1197-1203, Sep. 2010. https://doi.org/10.1109/TITB.2010.2058123
  7. S. J. Lee and I. S. Choi, "Time-frequency Analysis of the Bistatic RCS for a Wire Target", Journal of KIIT, Vol. 8, No. 9, pp. 35-42, Sep. 2010.
  8. H. S. Kim and H. S. Kim, "Damage Evaluation of a Structure Using Continuous Wavelet Transform", Journal of The KSMI, Vol. 12, No. 6, pp. 140, 146, Nov. 2008.
  9. V. C. Chen and H. Ling, "Joint time-frequency analysis for radar signal and image processing", IEEE Signal Processing Magazine, Vol. 16, No. 2, pp. 81-93, Mar. 1999. https://doi.org/10.1109/79.752053
  10. K. T. Kim, I. S. Choi, and H. T. Kim, "Efficient Radar Target Classification using Adaptive Joint Time-frequency Processing", IEEE Trans. on Antennas and Propagation, Vol. 48, No. 12, pp. 1789-1801, Dec. 2000. https://doi.org/10.1109/8.901267
  11. R. Waeber, P. I. Frazier, and S. G. Henderson, "Bisection search with noisy responses", SIAM Journal on Control and Optimization Vol. 51, No. 3, pp. 2261-2279, May 2013. https://doi.org/10.1137/120861898
  12. C. H. Park, I. S. Choi, and D. Y. Chae, "Performance comparison of data compression for HF monostatic and bistatic radar", Journal of KIIT, Vol. 14, No. 11, pp. 59-67, Nov. 2016.

Cited by

  1. Performance Analysis on Radar Target Classification for Waveform Structure, Resonance Frequencies and Three Feature Vector Fusions vol.16, pp.7, 2018, https://doi.org/10.14801/jkiit.2018.16.7.35
  2. Analysis of Diffraction Interference for Integrated Mast Using Uniform Theory of Diffraction vol.17, pp.3, 2017, https://doi.org/10.14801/jkiit.2019.17.3.51