DOI QR코드

DOI QR Code

Sulfated Polysaccharide Protects against Ionizing Radiation-induced Skin Damages

이온화 방사선으로 인한 피부 손상에 대한 Sulfated Polysaccharide의 보호 효과

  • Kim, Areum (Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University) ;
  • Cho, Jinhee (College of Veterinary Medicine, Jeju National University) ;
  • Madushani Herath, Kalahe Hewage Iresha Nadeeka (Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University) ;
  • Jee, Youngheun (Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University)
  • 김아름 (제주대학교 차세대융복합과학기술협동과정) ;
  • 조진희 (제주대학교 수의과대학 수의학과) ;
  • ;
  • 지영흔 (제주대학교 차세대융복합과학기술협동과정)
  • Received : 2017.12.08
  • Accepted : 2017.12.18
  • Published : 2017.12.31

Abstract

Sulfated polysaccharide (SP), generally known as fucoidan and commonly found in the cell walls of brown algae, has been reported to present biological effects including anti-inflammatory, anticancer, and antioxidant activities. Exposure to ionizing gamma-ray induces cellular production of reactive oxygen species and hair follicular cells, being the most sensitive to gammaray immediately go through apoptosis and damage their rapid differentiation essential for regeneration of hair. In this study we investigated the protective potential of SP's against gamma-ray induced hair follicle cells injury. For that, 8.5Gy gamma-ray was irradiated to the whole body of C57BL/6 mouse at day 6 after depilation treated with and without SP. Treatment with SP markedly inhibited formation of thiobarbituric acid-reactive substances(TBARS) compared to control group (without SP) after 48 h of irradiation. Increased cleaved caspase-3 and p53 expression by irradiation was decreased by treatment with SP after 8 h of irradiation. Furthermore, terminal deoxyribonucleotidyl transferase-mediated d-uridine 5' triphosphate nick end labelling (TUNEL) staining showed that the proportion of apoptotic cells in gamma-ray irradiated skins was significantly lower in mouse treated with SP than control group (without SP). Also, SP treatment increased the percentage of Ki-67 positive cells compared with those of irradiation only group. These results suggest that SP has potential as a radioprotector for hair follicular cells.

본 연구에서는 F. vesiculosus에서 fucoidan을 이용하여 피부에 대한 방사선 보호 효과를 확인하기 위한 실험을 수행하였다. 방사선을 조사한 마우스피부의 지질과산화물 함량이 방사선을 조사하지 않은 건강한 마우스 피부 조직보다 유의적으로 증가하였고, SP를 도포하였을 경우 지질과산화물의 함량이 유의적으로 감소하는 것을 확인하였다. 또한 SP의 도포로 인하여 cleaved caspase-3와 p53의 발현이 감소함으로써 세포자멸사(apoptosis)가 억제되었다. 세포 증식능 표지자로 세포주기(cell cycle) 중 M, G1, S, G2기에 발현하며, 세포분열기인 M기에 특히 많이 발현한다고 알려진 Ki-67의 발현이 증가함으로써 방사선으로 인하여 손상된 모낭세포의 복구를 증진시켰다. 이상의 결과로부터, SP의 도포는 방사선으로 인한 과산화물의함량을감소시켜모낭세포의세포자멸사(apoptosis)를 억제시키고, 또한 방사선으로 인하여 손상된 모낭세포의 복구를 증진시킴으로써 방사선에 대한 보호 효과를 가진다는 것을 확인하였다. 이는 SP가 방사선에 의한 모낭세포 손상에 대한 보호제로서의 가능성을 시사한다.

Keywords

Acknowledgement

Supported by : 제주대학교

References

  1. Li, B., Lu, F., Wei, X., and Zhao, R.: Fucoidan: structure and bioactivity. Molecules 2008, 13, 1671-1695. https://doi.org/10.3390/molecules13081671
  2. Chollet, L., Saboural, P., Chauvierre, C., Villemin, J. N., Letourneur, D., and Chaubet, F.: Fucoidan in nanomedicine. Mar. Drugs 2016, 14, E145. https://doi.org/10.3390/md14080145
  3. Jiao, G., Yu, G., Zhang, J., and Ewart, H. S.: Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196-223. https://doi.org/10.3390/md9020196
  4. Zaporozhets, T. and Besednova, N.: Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: Review. Pharm. Biol. 2016, 54, 3126-3135. https://doi.org/10.1080/13880209.2016.1185444
  5. Wang, W., Wang, S. X., and Guan, H. S.: The antiviral activities and mechanisms of marine polysaccharides: An over-view. Mar. Drugs 2012, 10, 2795-2816. https://doi.org/10.3390/md10122795
  6. Atashrazm, F., Lowenthal, R. M., Woods, G. M., Holloway, A. F., and Dickinson, J. L.: Fucoidan and caner: a multifunctional molecule with anti-tumor potential. Mar. Drugs 2015, 13, 2327-2346. https://doi.org/10.3390/md13042327
  7. Shan, X., Liu, X., Hao, J., Cai, C., Fan, F., Dun, Y., Zhao, X., Liu, X., Li, C., and Yu, G.: In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int. J. Biol. Macromol. 2016, 82, 249-255. https://doi.org/10.1016/j.ijbiomac.2015.11.036
  8. Yang, M., Ma, C., Sun, J., Shao, Q., Gao, W., Zhang, Y., Li, Z., Xie, Q., Dong, Z., and Qu, X.: Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells. Int. Immunopharmacol., 2008, 8, 1754-1760. https://doi.org/10.1016/j.intimp.2008.08.007
  9. Rocha, de, Souza, M. C., Margues, C. T., Guerra, Dore, C. M., Ferreira, da, Silva, F. R., Oliveira, Rocha, H. A., and Leite, E. L.: Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 2007, 19, 153-160. https://doi.org/10.1007/s10811-006-9121-z
  10. Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'lncecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., and Nifantiev, N. E.: A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541-552. https://doi.org/10.1093/glycob/cwm014
  11. Lee, S. H., Ko, C. I., Ahn, G., You, S., Kim, J. S., Heu, M. S., Kim, J., Jee, Y., and Jeon, Y. J.: Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydr. Polym. 2012, 89, 599-606. https://doi.org/10.1016/j.carbpol.2012.03.056
  12. Byon, Y. Y., Kim, M. H., Yoo, E. S., Hwang, K. K., Jee, Y., Shin, T., and Joo, H. G.: Radioprotective effects of fucoidan on bone marrow cells: Improvement of the cell survial and immunoreactivity. J. Vet. Sci. 2008, 9, 359-365. https://doi.org/10.4142/jvs.2008.9.4.359
  13. Rhee, K. H. and Lee, K. H.: Protective effects of fucoidan against ${\gamma}$-radiation-induced damage of blood cells. Arch. Pharm. Res. 2011, 34, 645-651. https://doi.org/10.1007/s12272-011-0415-6
  14. Lee, J., Kim, J., Moon, C., Kim, S. H., Hyun, J. W., Park, J. W., and Shin, T.: Radioprotective effects of fucoidan in mice treated with total body irradiation. Phytother. Res. 2008, 22, 1677-1681. https://doi.org/10.1002/ptr.2562
  15. Smith, T. A., Kirkpatrick, D. R., Smith, S., Smith, T. K., Pearson, T., Kailasam, A., Herrmann, K. Z., Schubert, J., and Agrawal, D. K.: Radiporptective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med. 2017, 14, 232.
  16. Zhou, R., Si, J., Zhang, H., Wang, Z., Li, J., Zhou, X., Gan, L., and Liu, Y.: The effects of x-ray radiation on the eye development of zebrafish. Hum. Exp. Toxicol. 2014, 33, 1040-1050. https://doi.org/10.1177/0960327114522278
  17. Lee, T. K., O'Brien, K. F., Wang, W., Sheng, C., Wang, T., Johnke, R. M., and Allison, R. R.: American ginseng modifies Cs-induced DNA damage and oxidative stress in human lymphocytes. Open. Nucl. Med. J. 2009, 1, 1-8. https://doi.org/10.2174/1876388X00901010001
  18. Abbaszadeh, A., Haddadi, G. H., and Haddadi, Z.: Melatonin role in ameliorating radiation-induced skin damage: From theory to practice (A review of literature). J. Biomed. Phys. Eng. 2017, 7, 127-136.
  19. Simpson, E. L.: Atopic dermatitis: A review of topical treatment options. Curr. Med. Res. Opin. 2010, 26, 633-640. https://doi.org/10.1185/03007990903512156
  20. Amber, K. T., Shiman, M. I., and Badiavas, E. V.: The use of antioxidants in radiotherapy-induced skin toxicity. Integr. Cancer. Ther. 2014, 13, 38-45. https://doi.org/10.1177/1534735413490235
  21. Park, E., Ahn, G., Yun, J. S., Kim, M. J., Bing, S. J., Kim, D. S., Lee, J., Lee, N. H., Park, J. W., and Jee, Y.: Dieckol rescues mice from lethal irradiation by accelerating hemopoiesis and curtailing immunosuppression. Int. J. Radiat. Biol. 2010, 86, 848-859.
  22. Prasad, N. R., Menon, V. P., Vasudev, V., and Pugalendi, K. V.: Radioprotective effect of sesamol on gamma-radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes. Toxicology 2005, 209, 225-235. https://doi.org/10.1016/j.tox.2004.12.009
  23. Agrawal, A. and Kale, R. K.: Radiation induced peroxidative damage: mechanism and significance. Indian. J. Exp. Biol. 2001, 39, 291-309.
  24. Wang, J., Zhang, Q., Zhang, Z., Song, H., and Li, P.: Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2010, 46, 6-12. https://doi.org/10.1016/j.ijbiomac.2009.10.015
  25. Eriksson, D. and Stigbrand, T.: Radiation-induced cell death mechanisms. Tumour. Biol. 2010, 31, 363-372. https://doi.org/10.1007/s13277-010-0042-8
  26. Verheij, M. and Bartelink, H.: Radiation-induced apoptosis. Cell Tissue Res. 2000, 301, 133-142. https://doi.org/10.1007/s004410000188
  27. Vishchuk, O. S., Ermakova, S. P., and Zvyagintseva, T. N.: The fucoidans from brown algae of Far-Eastern seas: anti-tumor activity and structure-function relationship. Food Chem. 2013, 141, 1211-1217. https://doi.org/10.1016/j.foodchem.2013.03.065
  28. Sysel, A. M., Valli, V. E., and Bauer, J. A.: Immunohistochemical quantification of the cobalamin transport protein, cell surface receptor and Ki-67 in naturally occurring canine and feline malignant tumors and in adjacent normal tissues. Oncotarget. 2015, 6, 2331-2348.