DOI QR코드

DOI QR Code

Synthesis of aragonite-precipitated calcium carbonate from oyster shell waste via a carbonation process and its applications

  • Ramakrishna, Chilakala (Department of R&D Team, Hanil Cement Corporation) ;
  • Thenepalli, Thriveni (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Han, Choon (Chemical Engineering Department, Kwangwoon University) ;
  • Ahn, Ji-Whan (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2016.03.31
  • Accepted : 2016.09.10
  • Published : 2017.01.01

Abstract

Oyster shells are abundantly available in nature without eminent use and are dumped into landfills in vast quantities. Their improper disposal causes environmental problems, resulting in a waste of natural resources. Recycling shell waste could potentially eliminate the environmental problems and, moreover, convert the waste into high-valueadded products, such as synthetic precipitated calcium carbonate (PCC), which can be obtained from oyster waste and which is used to enhance the mechanical properties of various materials. It can also be used as a filler material in the plastic and paper industries. This study presents a simple method for the extraction of aragonite needles from oyster shell waste via a carbonation process. The obtained aragonite-precipitated calcium carbonate (PCC) is characterized by XRD and SEM, which is used to assess the morphology and particle size. Using the proposed process, oyster shell waste powder was calcined at $1,000^{\circ}C$ for 2 h, after which the calcined shell powder was dissolved in water for hydration. The hydrated solution was mixed with an aqueous solution of magnesium chloride at $80^{\circ}C$ and $CO_2$ was then bubbled into the suspension for 3 h to produce needle-shaped aragonite PCC. Finally, aragonite-type precipitated calcium carbonate was synthesized from the oyster shell powder via a simple carbonation process, yielding a product with an average particle size of $30-40{\mu}m$.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry and Energy

References

  1. P. Bernal and D. Oliva, The first global integrated marine assessment. World Ocean assessment 1. Chapter 12, United Nations, New York (2016).
  2. FAO, The state of world fisheries and aquaculture, Food and Agriculture Organization of the United Nations (2014).
  3. FAO, Global Aquaculture Production statistics database updated to 2013 Summary information, Food and Agriculture Organization of the United Nations (2015).
  4. H. S. Kim, The study of application of discarded oyster shell powder as an architectural material, Master thesis, Korea (2007).
  5. G. L. Yoon, B.T. Kim, B.O. Kim and S. H. Han, Waste Manage., 23, 825 (2003). https://doi.org/10.1016/S0956-053X(02)00159-9
  6. J. H. Jung, K. S. Yoo, H. G. Kim, H. K. Lee and B. H. Shon, J. Ind. Eng. Chem., 13, 512 (2007).
  7. H. B. Kwon, C.W. Lee, B. S. Jun, J.D. Yun, S.Y. Weon and B. Koopman, Resour. Conserv. Recy., 41, 75 (2004). https://doi.org/10.1016/j.resconrec.2003.08.005
  8. S. Asaoka, T. Yamamoto, S. Kondo and S. Hayakawa, Bioresour. Technol., 100, 4127 (2009). https://doi.org/10.1016/j.biortech.2009.03.075
  9. W. H. Park and C. Polprasert, Ecol. Eng., 34, 50 (2008). https://doi.org/10.1016/j.ecoleng.2008.05.014
  10. N. Nakatani, H. Takamori, K. Takeda and H. Sakugawa, Bioresour. Technol., 100, 1510 (2009). https://doi.org/10.1016/j.biortech.2008.09.007
  11. C.H. Lee, D.K. Lee, M.A. Ali and P. J. Kim, Waste Manage., 28, 2702 (2008). https://doi.org/10.1016/j.wasman.2007.12.005
  12. H. B. Kwon, C.W. Lee, B. S. Jun, S.Y. Weon and B. Koopman, Resour. Conserv. Recy., 41, 75 (2004). https://doi.org/10.1016/j.resconrec.2003.08.005
  13. K. Mori and K. Takahashi, Mizushorigijutu., 39, 1 (1998).
  14. R.A. F. de Alvarenga, B.M. Galindro, Cde. F. Helpa and S.R. Soares, J. Environ. Manage., 106, 102 (2012). https://doi.org/10.1016/j.jenvman.2012.04.017
  15. J. Hutchinson and A.D. O'Sullivan, Scanning electron microscopy of substrates from bioengineered treatment reactors, University of Canterbury, New Zealand (2008).
  16. L. Xiang, Y. Xiang, Y. Wen and F. Wei, Mater. Lett., 58, 959 (2004). https://doi.org/10.1016/j.matlet.2003.07.034
  17. Z.T. Yao, T. Chen, H.Y. Li, M. S. Xia, Y. Ye and H. Zheng, J. Hazard. Mater., 262, 212 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.062
  18. M. Suzuki, S. Sakuda and H. Nagasawa, Biosci. Biotech. Bioch., 71, 1735 (2007). https://doi.org/10.1271/bbb.70140
  19. Z.T. Yao, M. S. Xia, H.Y. Li, T. Chen, Y. Ye and H. Zheng, Crit. Rev. Env. Sci. Tec., 44, 2502 (2014). https://doi.org/10.1080/10643389.2013.829763
  20. I. Corni, T. J. Harvey, J. A. Wharton, K.R. Stokes, F. C. Walsh and R. J.K. Wood, Bioinspir. Biomim., 7, 1 (2012).
  21. M.H. Chong, B.C. Chun, Y.C. Chung and B.G. Cho, J. Appl. Polym. Sci., 99, 1583 (2006). https://doi.org/10.1002/app.22484
  22. Z.D. Lin, Z. X. Guan, C. Chen and B. F. Xu, Thermochim. Acta., 551, 149 (2013). https://doi.org/10.1016/j.tca.2012.10.009
  23. E. Daniel and P. Luiz Antonio, Mater. Res. Bull., 12, 517 (2009). https://doi.org/10.1590/S1516-14392009000400023
  24. H.Y. Li, Y.Q. Tan, L. Zhang, Y. X. Zhang, Y. H. Song, Y. Ye and M. S. Xia, J. Hazard. Mater., 217, 256 (2012).
  25. P.M.A. de Melo, L.B. Silva, A.S.F. Santos, T.A. Passos, S. J.G. Lima and M. M. Ueki, Proceedings of 22nd International Congress of Mechanical Engineering, Ribeirao Preto (2013).
  26. J.W. Ahn, W.K. Park, K.S. You, H.C. Cho, S. J. Ko and C. Han, Solid State Phenom., 124, 707 (2007).
  27. W.K. Park, S. J. Ko, S.W. Lee, K. H. Cho, J.W. Ahn and C. Han, J. Cryst. Growth, 310, 2593 (2008). https://doi.org/10.1016/j.jcrysgro.2008.01.023
  28. M. Holcomb, A. L. Cohen, R. I. Gabitov and J. L. Hutter, Geochim. Cosmochim. Act., 73, 4166 (2009). https://doi.org/10.1016/j.gca.2009.04.015
  29. C. Linga Raju, K.V. Narasimhulu, N.O. Gopal, J. L. Rao and B.C.V. Reddy, J. Mole. Structure., 608, 201 (2002). https://doi.org/10.1016/S0022-2860(01)00952-8
  30. J. Kuther, G. Nelles, R. Seshadri, M. Schaub, H. J. Butt and W. Tremel, Chem. Eur. J., 4, 1834 (1998). https://doi.org/10.1002/(SICI)1521-3765(19980904)4:9<1834::AID-CHEM1834>3.0.CO;2-6
  31. Y. Ota, S. Inui, T. Iwashita, T. Kasuga and Y. Abe, J. Am. Ceram. Soc., 78, 1983 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08924.x
  32. L. F. Wang, I. Sondi and E. Matijevic, J. Colloid Interface Sci., 218, 545 (1999). https://doi.org/10.1006/jcis.1999.6463
  33. S.D. Skapin and I. Sondi, J. Colloi Interface Sci., 347, 221 (2010). https://doi.org/10.1016/j.jcis.2010.03.070
  34. Z. S. Hu and Y.L. Deng, J. Colloid Interface Sci., 266, 359 (2003). https://doi.org/10.1016/S0021-9797(03)00699-4
  35. D. Rautaray, A. Banpurkar, S.R. Sainkar, A.V. Limaye, N.R. Pavaskar, S.B. Ogale and M. Sastry, Adv. Mater., 15, 1273 (2003). https://doi.org/10.1002/adma.200304535
  36. G. Li, Z. Li and H.W. Ma, Int. J. Min. Proc., 123, 25 (2013). https://doi.org/10.1016/j.minpro.2013.03.006
  37. C. Domingo, E. Loste, J. Gomez-Morales, J. Garcia-Carmona and J. Fraile, J. Super, Flu., 36, 202 (2006). https://doi.org/10.1016/j.supflu.2005.06.006

Cited by

  1. A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications vol.55, pp.4, 2017, https://doi.org/10.9713/kcer.2017.55.4.443
  2. Effect by Alkaline Flocculation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell vol.9, pp.9, 2017, https://doi.org/10.3390/w9090661
  3. Sustainable Solutions for Oyster Shell Waste Recycling in Thailand and the Philippines vol.4, pp.3, 2017, https://doi.org/10.3390/recycling4030035
  4. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions vol.54, pp.1, 2017, https://doi.org/10.1021/acs.est.9b03736
  5. Synthesis, Characterization and Mechanism Study of Green Aragonite Crystals from Waste Biomaterials as Calcium Supplement vol.12, pp.12, 2017, https://doi.org/10.3390/su12125062
  6. Progress on Modified Calcium Oxide Derived Waste-Shell Catalysts for Biodiesel Production vol.11, pp.2, 2017, https://doi.org/10.3390/catal11020194
  7. Reduced graphene oxide/oyster shell powers/iron oxide composite electrode for high performance supercapacitors vol.391, pp.None, 2017, https://doi.org/10.1016/j.electacta.2021.138868
  8. Review of shell waste reutilization to promote sustainable shellfish aquaculture vol.14, pp.1, 2017, https://doi.org/10.1111/raq.12610