DOI QR코드

DOI QR Code

Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures

  • Atashrouz, Saeid (Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Mahshahr Campus) ;
  • Mirshekar, Hamed (Iran Polymer and Petrochemical Institute (IPPI)) ;
  • Hemmati-Sarapardeh, Abdolhossein (Department of Petroleum Engineering, Amirkabir University of Technology) ;
  • Moraveji, Mostafa Keshavarz (Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Nasernejad, Bahram (Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic))
  • 투고 : 2016.05.04
  • 심사 : 2016.09.30
  • 발행 : 2017.02.01

초록

The main objective of this study was to develop soft computing approaches for prediction of physicochemical properties of IL mixtures including: density, heat capacity, thermal conductivity, and surface tension. The proposed models in this study are based on support vector machine (SVM), least square support vector machines (LSSVM), and group method of data handling type polynomial neural network (GMDH-PNN) systems. To find the LSSVM and SVM adjustable parameters, genetic algorithm (GA) as a meta-heuristic algorithm was utilized. The results showed that LSSVM is more robust and reliable for prediction of physicochemical properties of IL mixtures. The proposed GA-LSSVM model provides average absolute relative deviations of 0.38%, 0.18%, 0.77% and 1.18% for density, heat capacity, thermal conductivity, and surface tension, respectively, which demonstrates high accuracy of the model for prediction of physicochemical properties of IL mixtures.

키워드

참고문헌

  1. B. Mokhtarani, M.M. Mojtahedi, H.R. Mortaheb, M. Mafi, F. Yazdani and F. Sadeghian, J. Chem. Eng. Data, 53, 677 (2008). https://doi.org/10.1021/je700521t
  2. S. Atashrouz, M. Mozaffarian and G. Pazuki, Ind. Eng. Chem. Res., 54, 8600 (2015). https://doi.org/10.1021/acs.iecr.5b00932
  3. B. H. Park, Korean J. Chem. Eng., 33, 2191 (2016). https://doi.org/10.1007/s11814-016-0053-2
  4. B. Gonzalez, N. Calvar, E. Gomez, I. Dominguez and A. Dominguez, J. Chem. Eng. Data, 54, 1353 (2009). https://doi.org/10.1021/je800981d
  5. T.-Y. Wu, B.-K. Chen, L. Hao, K.-F. Lin and I.-W. Sun, J. Taiwan Inst. Chem. Eng., 42, 914 (2011). https://doi.org/10.1016/j.jtice.2011.04.006
  6. S. Atashrouz, M. Zarghampour, S. Abdolrahimi, G. Pazuki and B. Nasernejad, J. Chem. Eng. Data, 59, 3691 (2014). https://doi.org/10.1021/je500572t
  7. Y. Huang, X. Zhang, Y. Zhao, S. Zeng, H. Dong and S. Zhang, Phys. Chem. Chem. Phys., 17, 26918 (2015). https://doi.org/10.1039/C5CP03446A
  8. K. Marsh, J. Boxall and R. Lichtenthaler, Fluid Phase Equilib., 219, 93 (2004). https://doi.org/10.1016/j.fluid.2004.02.003
  9. A. Heintz, J. Chem. Thermodyn., 37, 525 (2005). https://doi.org/10.1016/j.jct.2005.04.003
  10. H. Niedermeyer, J. P. Hallett, I. J. Villar-Garcia, P.A. Hunt and T. Welton, Chem. Soc. Rev., 41, 7780 (2012). https://doi.org/10.1039/c2cs35177c
  11. V. H. Alvarez, S. Mattedi, M. Martin-Pastor, M. Aznar and M. Iglesias, J. Chem. Thermodyn., 43, 997 (2011). https://doi.org/10.1016/j.jct.2011.01.014
  12. S.M. Hosseini, J. Moghadasi, M.M. Papari and F. Fadaei Nobandegani, Ind. Eng. Chem. Res., 51, 758 (2012). https://doi.org/10.1021/ie2012455
  13. F. Yousefi, Ionics (Kiel), 18, 769 (2012). https://doi.org/10.1007/s11581-012-0679-y
  14. A. E. Andreatta, E. Rodil, A. Arce and A. Soto, J. Solution Chem., 43, 404 (2014). https://doi.org/10.1007/s10953-014-0128-9
  15. P.-Y. Lin, A. N. Soriano, R.B. Leron and M.-H. Li, Exp. Therm. Fluid Sci., 35, 1107 (2011). https://doi.org/10.1016/j.expthermflusci.2011.03.005
  16. E. J. Gonzalez, B. Gonzalez, N. Calvar and A. Dominguez, J. Chem. Eng. Data, 52, 1641 (2007). https://doi.org/10.1021/je700029q
  17. B. Gonzalez, N. Calvar, E. Gomez and A. Dominguez, J. Chem. Thermodyn., 40, 1274 (2008). https://doi.org/10.1016/j.jct.2008.03.013
  18. E. Mohagheghian, H. Zafarian-Rigaki, Y. Motamedi-Ghahfarrokhi and A. Hemmati-Sarapardeh, Korean J. Chem. Eng., 32, 2087 (2015). https://doi.org/10.1007/s11814-015-0025-y
  19. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi and Z. Alaee, Korean J. Chem. Eng., 33, 1352 (2016). https://doi.org/10.1007/s11814-014-0334-6
  20. Y. Ammi, L. Khaouane and S. Hanini, Korean J. Chem. Eng., 32, 2300 (2015). https://doi.org/10.1007/s11814-015-0086-y
  21. Satya Eswari J. and N. Chandrakar, Korean J. Chem. Eng., 33, 1318 (2016). https://doi.org/10.1007/s11814-015-0255-z
  22. S. Atashrouz and H. Mirshekar, Bulg. Chem. Commun., 46, 104 (2014).
  23. S. Atashrouz, G. Pazuki and Y. Alimoradi, Fluid Phase Equilib., 372, 43 (2014). https://doi.org/10.1016/j.fluid.2014.03.031
  24. M. Hashemkhani, R. Soleimani, H. Fazeli, M. Lee, A. Bahadori and M. Tavalaeian, J. Mol. Liq., 211, 534 (2015). https://doi.org/10.1016/j.molliq.2015.07.038
  25. A. Hemmati-Sarapardeh, B. Aminshahidy, A. Pajouhandeh, S.H. Yousefi and S.A. Hosseini-Kaldozakh, J. Taiwan Inst. Chem. Eng., 59, 1 (2016). https://doi.org/10.1016/j.jtice.2015.07.017
  26. C.-M. Vong, P.-K. Wong and Y.-P. Li, Eng. Appl. Artif. Intell., 19, 277 (2006). https://doi.org/10.1016/j.engappai.2005.09.001
  27. A. Hemmati-Sarapardeh, R. Alipour-Yeganeh-Marand, A. Naseri, A. Safiabadi, F. Gharagheizi, P. Ilani-Kashkouli and A. H. Mohammadi, Fluid Phase Equilib., 354, 177 (2013). https://doi.org/10.1016/j.fluid.2013.06.005
  28. A. Eslamimanesh, F. Gharagheizi, M. Illbeigi, A. H. Mohammadi, A. Fazlali and D. Richon, Fluid Phase Equilib., 316, 34 (2012). https://doi.org/10.1016/j.fluid.2011.11.029
  29. M. Hosseinzadeh and A. Hemmati-Sarapardeh, J. Mol. Liq., 200, 340 (2014). https://doi.org/10.1016/j.molliq.2014.10.033
  30. A.G. Ivakhnenko, Sov. Autom. Control., 13, 43 (1968).
  31. A.G. Ivakhnenko, IEEE Trans. Syst. Man. Cybern., 364 (1971).
  32. S.Z. Reyhani, H. Ghanadzadeh, L. Puigjaner and F. Recances, Ind. Eng. Chem. Res., 48, 2129 (2009). https://doi.org/10.1021/ie801082s
  33. S. Atashrouz, G. Pazuki and S. S. Kakhki, J. Mol. Liq., 202, 95 (2015). https://doi.org/10.1016/j.molliq.2014.12.013
  34. S. Atashrouz, E. Amini and G. Pazuki, Ionics (Kiel), 21, 1595 (2014).
  35. V.N. Vapnik, Statistical Learning Theory, Wiley (1998).
  36. J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Support Vector Machines, World Scientific (2002).
  37. J. Suykens and J. Vandewalle, Neural Process Lett., 9, 293 (1999). https://doi.org/10.1023/A:1018628609742
  38. R. L. Haupt and S. E. Haupt, Practical genetic algorithms, Wiley (2004).
  39. K.K. Tahboub, M. Barghash, M. Arafeh and O. Ghazal, Math. Probl. Eng., 2016, 1 (2016).
  40. H. Karimi, F. Yousefi and M.R. Rahimi, Heat Mass Transf., 47, 1417 (2011). https://doi.org/10.1007/s00231-011-0802-z
  41. S. Atashrouz, M. Mozaffarian and G. Pazuki, Korean J. Chem. Eng., Accepted Manuscript (2016), DOI:10.1007/s11814-016-0169-4.
  42. R. Ge, C. Hardacre, P. Nancarrow and D.W. Rooney, J. Chem. Eng. Data, 52, 1819 (2007). https://doi.org/10.1021/je700176d
  43. M. Tariq, M. G. Freire, B. Saramago, J. A. P. Coutinho, J. N. C. Lopes and L. P. N. Rebelo, Chem. Soc. Rev., 41, 829 (2012). https://doi.org/10.1039/C1CS15146K
  44. P. Navia, J. Troncoso and L. Romani, J. Chem. Eng. Data, 52, 1369 (2007). https://doi.org/10.1021/je700076t
  45. H. Ning, M. Hou, Q. Mei, Y. Liu, D. Yang and B. Han, Sci. China Chem., 55, 1509 (2012), DOI:10.1007/s11426-012-4655-1.
  46. I. Bahadur, N. Deenadayalu, Z. Tywabi, S. Sen and T. Hofman, J. Chem. Thermodyn., 49, 24 (2012). https://doi.org/10.1016/j.jct.2012.01.002
  47. A.B. Pereiro and A. Rodriguez, J. Chem. Eng. Data, 52, 600 (2007). https://doi.org/10.1021/je060497d
  48. S. Singh, I. Bahadur, G.G. Redhi, E.E. Ebenso and D. Ramjugernath, J. Chem. Thermodyn., 89, 104 (2015). https://doi.org/10.1016/j.jct.2015.05.004
  49. S. Singh, I. Bahadur, G.G. Redhi, E.E. Ebenso and D. Ramjugernath, J. Mol. Liq., 199, 518 (2014). https://doi.org/10.1016/j.molliq.2014.09.055
  50. S. Wang, J. Jacquemin, P. Husson, C. Hardacre and M.F.C. Gomes, J. Chem. Thermodyn., 41, 1206 (2009). https://doi.org/10.1016/j.jct.2009.05.009
  51. S. Singh, I. Bahadur, G.G. Redhi, D. Ramjugernath and E.E. Ebenso, J. Mol. Liq., 200, 160 (2014). https://doi.org/10.1016/j.molliq.2014.10.017
  52. A.B. Pereiro, E. Tojo, A. Rodriguez, J. Canosa and J. Tojo, J. Chem. Thermodyn., 38, 651 (2006). https://doi.org/10.1016/j.jct.2005.07.020
  53. E. Rilo, J. Pico, S. Garcia-Garabal, L. M. Varela and O. Cabeza, Fluid Phase Equilib., 285, 83 (2009). https://doi.org/10.1016/j.fluid.2009.07.010
  54. E. Gomez, B. Gonzalez, N. Calvar and A. Dominguez, J. Chem. Thermodyn., 40, 1208 (2008). https://doi.org/10.1016/j.jct.2008.04.006
  55. H. Rodriguez and J. Brennecke, J. Chem. Eng. Data, 51, 2145 (2006). https://doi.org/10.1021/je0602824
  56. Y. Tian, X. Wang and J. Wang, Engineering, 53, 2056 (2008).
  57. A. B. Pereiro and A. Rodriguez, Phys. Chem. Liq., 46, 172 (2008).
  58. E. Gomez, B. Gonzalez, A. Dominguez, E. Tojo and J. Tojo, J. Chem. Eng. Data, 51, 696 (2006). https://doi.org/10.1021/je050460d
  59. A. Tekin, J. Safarov, A. Shahverdiyev and E. Hassel, J. Chem. Eng. Data, 136, 177 (2007).
  60. G. Garcia-Miaja, J. Troncoso and L. Romani, J. Chem. Eng. Data, 52, 2261 (2007), DOI:10.1021/je7002836.
  61. D. Waliszewski and H. Piekarski, J. Chem. Thermodyn., 42, 189 (2010). https://doi.org/10.1016/j.jct.2009.08.002
  62. D. Waliszewski, J. Chem. Thermodyn., 40, 203 (2008). https://doi.org/10.1016/j.jct.2007.07.001
  63. Y. H. Yu, A. N. Soriano and M. H. Li, J. Taiwan Inst. Chem. Eng., 40, 205 (2009). https://doi.org/10.1016/j.jtice.2008.09.006
  64. P.Y. Lin, A. N. Soriano, A.R. Caparanga and M. H. Li, Thermochim. Acta., 496, 105 (2009). https://doi.org/10.1016/j.tca.2009.07.006
  65. Y. H. Yu, A. N. Soriano and M. H. Li, Thermochim. Acta., 482, 42 (2009). https://doi.org/10.1016/j.tca.2008.10.015
  66. W. Chen, L. Qiu, S. Liang, X. Zheng and D. Tang, Thermochim. Acta., 560, 1 (2013). https://doi.org/10.1016/j.tca.2013.02.020
  67. A. Wandschneider, J. K. Lehmann and A. Heintz, J. Chem. Eng. Data, 53, 596 (2008). https://doi.org/10.1021/je700621d
  68. M. Geppert-Rybczynska, J. K. Lehmann and A. Heintz, J. Chem. Eng. Data, 56, 1443 (2011). https://doi.org/10.1021/je101146f
  69. M. Geppert-Rybczynska, J. K. Lehmann, J. Safarov and A. Heintz, J. Chem. Thermodyn., 62, 104 (2013). https://doi.org/10.1016/j.jct.2013.02.021
  70. E. Rilo, M. Dominguez-Perez, J. Vila, L. M. Varela and O. Cabeza, J. Chem. Thermodyn., 49, 165 (2012). https://doi.org/10.1016/j.jct.2012.01.023
  71. U. Domanska, A. Pobudkowska and M. Rogalski, J. Colloid Interface Sci., 322, 342 (2008). https://doi.org/10.1016/j.jcis.2008.02.039
  72. J.Y. Wang, F.Y. Zhao, Y. M. Liu, X. L. Wang and Y.Q. Hu, Fluid Phase Equilib., 305, 114 (2011). https://doi.org/10.1016/j.fluid.2011.03.008
  73. J.W. Russo and M.M. Hoffmann, J. Chem. Eng. Data, 56, 3703 (2011). https://doi.org/10.1021/je200659c
  74. J. S. Torrecilla, T. Rafione, J. Garcia and F. Rodriguez, J. Chem. Eng. Data, 53, 923 (2008). https://doi.org/10.1021/je700523b
  75. J. Tong, M. Hong, Y. Chen, H. Wang, W. Guan and J.-Z. Yang, J. Chem. Thermodyn., 54, 352 (2012). https://doi.org/10.1016/j.jct.2012.05.012
  76. J.Y. Wang, X. J. Zhang, Y.Q. Hu, G. Di Qi and L.Y. Liang, J. Chem. Thermodyn., 45, 43 (2012). https://doi.org/10.1016/j.jct.2011.09.003
  77. H. F.D. Almeida, J.A. Lopes-da-Silva, M.G. Freire and J.A.P. Coutinho, J. Chem. Thermodyn., 57, 372 (2013). https://doi.org/10.1016/j.jct.2012.09.004

피인용 문헌

  1. A soft-computing technique for prediction of water activity in PEG solutions vol.295, pp.3, 2017, https://doi.org/10.1007/s00396-017-4017-9
  2. Toward an intelligent approach for predicting surface tension of binary mixtures containing ionic liquids vol.35, pp.7, 2017, https://doi.org/10.1007/s11814-017-0326-4
  3. Prediction of Partial Miscibility of Binary Mixtures Consisting of Ionic Liquids vol.32, pp.4, 2017, https://doi.org/10.2514/1.t5390
  4. Modelling asphaltene precipitation titration data: A committee of machines and a group method of data handling vol.97, pp.2, 2017, https://doi.org/10.1002/cjce.23254
  5. Machine Learning Approaches for Further Developing the Understanding of the Property Trends Observed in Protic Ionic Liquid Containing Solvents vol.123, pp.18, 2017, https://doi.org/10.1021/acs.jpcb.9b02072
  6. Predicting hydrogen storage capacity of metal-organic frameworks using group method of data handling vol.32, pp.18, 2017, https://doi.org/10.1007/s00521-020-04837-3
  7. On the Evaluation of Rhamnolipid Biosurfactant Adsorption Performance on Amberlite XAD-2 Using Machine Learning Techniques vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5530093
  8. Machine learning approaches to understand and predict rate constants for organic processes in mixtures containing ionic liquids vol.23, pp.4, 2021, https://doi.org/10.1039/d0cp04227g
  9. Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence vol.23, pp.12, 2021, https://doi.org/10.1007/s10668-021-01402-3
  10. New mathematical modeling of temperature-based properties of ionic liquids mixture: Comparison between semi-empirical equation and equation of state vol.177, pp.None, 2017, https://doi.org/10.1016/j.cherd.2021.10.039