DOI QR코드

DOI QR Code

Solubility of celecoxib in N-methyl-2-pyrrolidone + water mixtures at various temperatures: Experimental data and thermodynamic analysis

  • Nozohouri, Sarah (Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences) ;
  • Shayanfar, Ali (Food and Drug Safety Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences) ;
  • Cardenas, Zaira Johanna (Grupo de Investigaciones Farmaceutico-Fisicoquimicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia) ;
  • Martinez, Fleming (Grupo de Investigaciones Farmaceutico-Fisicoquimicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia) ;
  • Jouyban, Abolghasem (Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences)
  • Received : 2016.11.22
  • Accepted : 2017.02.06
  • Published : 2017.05.01

Abstract

Solubility is one of the most significant physicochemical properties of drugs, and improving the solubility of drugs is still a challenging subject in pharmaceutical sciences due to requirements of enhancing their bioavailability. Celecoxib, according to the biopharmaceutics classification system (BCS), is a class 2 drug, possessing low water solubility (<$5{\mu}g{\cdot}mL^{-1}$) and high permeability. Increasing the solubility of this group can lead to improved bioavailability, dose reduction and subsequently, increased efficiency and reduced side effects. In this study, celecoxib solubility was determined in binary mixtures of N-methyl-2-pyrrolidone (NMP)+water at 293.2, 298.2, 303.2, 308.2 and 313.2 K. The solubility of celecoxib is increased with the addition of NMP to the aqueous solutions and reaches a maximum value in neat NMP. In addition, increased temperature leads to enhanced solubility of celecoxib in a given solvent composition. The solubility data of celecoxib in NMP+water at different temperatures were correlated using different mathematical models including, the Jouyban-Acree model and a combination of the Jouyban-Acree and van't Hoff models. Thermodynamic parameters, Gibbs energy, enthalpy and entropy of dissolution processes were performed based on Gibbs and van't Hoff equations. Thermodynamic analysis allowed observing two main entropy or enthalpy-driven dissolution mechanisms, varying according to the composition of aqueous mixtures. Moreover, preferential solvation of celecoxib by water is observed in water-rich mixtures but preferential solvation by NMP was seen in mixtures with similar composition and also in NMP-rich mixtures.

Keywords

References

  1. K.T. Savjani, A.K. Gajjar and J.K. Savjani, ISRN. Pharm., 2012, 195727 (2012).
  2. H.D. Williams, N. L. Trevaskis, S.A. Charman, R. M. Shanker, W.N. Charman, C.W. Pouton and C. J. H. Porter, Pharmacol. Rev., 65, 315 (2013). https://doi.org/10.1124/pr.112.005660
  3. W. Yang, K. Wu, Y. Hu, T. Zhang, Q. Guo, S. Yang and Y. Shi, Korean J. Chem. Eng., 32, 1158 (2015). https://doi.org/10.1007/s11814-014-0324-8
  4. Z. Huang, C. Yu, W. Xue, F. Lin and Z. Zeng, Korean J. Chem. Eng., 34, 206 (2017). https://doi.org/10.1007/s11814-016-0247-7
  5. M.K. Yeh, L.C. Chang and A.H. Chiou, AAPS PharmSciTech., 10, 166 (2009). https://doi.org/10.1208/s12249-009-9189-2
  6. D. Stephens, L. C. Li, E. Pec and D. Robinson, Drug Dev. Ind. Pharm., 25, 961 (1999). https://doi.org/10.1081/DDC-100102258
  7. R. Watkinson, R. Guy, J. Hadgraft and M. Lane, Skin Pharmacol. Physiol., 22, 225 (2009). https://doi.org/10.1159/000231528
  8. S. Proniuk, B. M. Liederer, S. E. Dixon, J. A. Rein, M.A. Kallen and J. Blanchard, J. Pharm. Sci., 91, 101 (2002). https://doi.org/10.1002/jps.1172
  9. B. Bendas, U. Schmalfuss and R. Neubert, Int. J. Pharm., 116, 19 (1995). https://doi.org/10.1016/0378-5173(94)00267-9
  10. T. Rager and R. Hilfiker, Cryst. Growth Des., 10, 3237 (2010). https://doi.org/10.1021/cg100361y
  11. R. Porra, W. Thompson and P. Kriedemann, Biochim. Biophys. Acta, 975, 384 (1989). https://doi.org/10.1016/S0005-2728(89)80347-0
  12. H. Zhao, J. Dong, J. Lu, J. Chen, Y. Li, L. Shan, Y. Lin, W. Fan and G. Gu, J. Agric. Food Chem., 54, 7277 (2006). https://doi.org/10.1021/jf061087w
  13. A. Jouyban, M.A. A. Fakhree and A. Shayanfar, J. Pharm. Pharm. Sci., 13, 524 (2010). https://doi.org/10.18433/J3P306
  14. W. Bartsch, G. Sponer, K. Dietmann and G. Fuchs, Arzneimitt. Forsch., 26, 1581 (1975).
  15. R. Tarantino, E. Bishop, F. C. Chen, K. Iqbal and A.W. Malick, J. Pharm. Sci., 83, 1213 (1994). https://doi.org/10.1002/jps.2600830905
  16. R. Sanghvi, R. Narazaki, S.G. Machatha and S.H. Yalkowsky, AAPS PharmSciTech., 9, 366 (2008). https://doi.org/10.1208/s12249-008-9050-z
  17. F.E. Silverstein, G. Faich, J.L. Goldstein, L.S. Simon, T. Pincus, A. Whelton, R. Makuch, G. Eisen, N.M. Agrawal, W.F. Stenson, A.M. Burr, W.W. Zhao, J.D. Kent, J.B. Lefkowith, K. M. Verburg and G. S. Geis, JAMA, 284, 1247 (2000). https://doi.org/10.1001/jama.284.10.1247
  18. N.M. Davies, A. J. McLachlan, R.O. Day and K.M. Williams, Clin. Pharmacokinet., 38, 225 (2000). https://doi.org/10.2165/00003088-200038030-00003
  19. P. Rathi, A. Jouyban, M. Khoubnasabjafari and M. Kale, J. Chem. Eng. Data, 60, 2128 (2015). https://doi.org/10.1021/acs.jced.5b00201
  20. A. Jouyban, J. Pharm. Pharm. Sci., 11, 32 (2008).
  21. W. E. Acree Jr., Thermochim. Acta, 198, 71 (1992). https://doi.org/10.1016/0040-6031(92)85059-5
  22. A. Jouyban-Gharamaleki and W. E. Acree Jr., Int. J. Pharm., 167, 177 (1998). https://doi.org/10.1016/S0378-5173(98)00073-8
  23. N.A. Williams and G. L. Amidon, J. Pharm. Sci., 73, 14 (1984). https://doi.org/10.1002/jps.2600730105
  24. M. Barzegar-Jalali and A. Jouyban-Gharamaleki, Int. J. Pharm., 152, 247 (1997). https://doi.org/10.1016/S0378-5173(97)04922-3
  25. A. Jouyban-Gharamaleki, Chem. Pharm. Bull., 46, 1058 (1998). https://doi.org/10.1248/cpb.46.1058
  26. A. Jouyban, H. K. Chan, S. Romero, M. Khoubnasabjafari and P. Bustamante, Pharmazie, 59, 117 (2004).
  27. M. Barzegar-Jalali and J. Hanaee, Int. J. Pharm., 109, 291 (1994). https://doi.org/10.1016/0378-5173(94)90391-3
  28. M. Barzegar-Jalali and A. Jouyban-Gharamaleki, Int. J. Pharm., 140, 237 (1996). https://doi.org/10.1016/0378-5173(96)04557-7
  29. A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B. Clark and W. E. Acree Jr., Int. J. Pharm., 177, 93 (1999). https://doi.org/10.1016/S0378-5173(98)00333-0
  30. A. Jouyban, J. Pharm. Pharm. Sci., 9, 262 (2006).
  31. A. Jouyban, N.Y. K. Chew, H. K. Chan, M. Sabour and W. E. Acree Jr., Chem. Pharm. Bull., 53, 634 (2005). https://doi.org/10.1248/cpb.53.634
  32. A. Jouyban, A. Shayanfar, V. Panahi-Azar, J. Soleymani, B.H. Yousefi, W. E. Acree Jr. and P. York, J. Pharm. Sci., 100, 4368 (2011). https://doi.org/10.1002/jps.22589
  33. A. Jouyban-Gharamaleki and J. Hanaee, Int. J. Pharm., 154, 245 (1997). https://doi.org/10.1016/S0378-5173(97)00136-1
  34. D. Grant, M. Mehdizadeh, A. L. Chow and J. Fairbrother, Int. J. Pharm., 18, 25 (1984). https://doi.org/10.1016/0378-5173(84)90104-2
  35. S. Eghrary, R. Zarghami, F. Martinez and A. Jouyban, J. Chem. Eng. Data, 57, 1544 (2012). https://doi.org/10.1021/je201268b
  36. A. Jouyban, M. A. A. Fakhree and W. E. Acree Jr., J. Chem. Eng. Data, 57, 1344 (2012). https://doi.org/10.1021/je201340e
  37. A. Jouyban and M. A. A. Fakhree, In: W. E. Acree Jr., Toxicity and Drug Testing, InTech Publisher, New York, 187 (2012).
  38. T. Higuchi and K. A. Connors, Adv. Anal. Chem. Instr., 4, 117 (1965).
  39. A. Shayanfar, W. E. Acree Jr. and A. Jouyban, J. Chem. Eng. Data, 54, 2964 (2009). https://doi.org/10.1021/je9000153
  40. S. Soltanpour and A. Jouyban, J. Solution Chem., 40, 2032 (2011). https://doi.org/10.1007/s10953-011-9767-2
  41. S. Soltanpour, B. Jafari, M. Barzegar-Jalali and A. Jouyban, J. Drug Deliv. Sci. Technol., 24, 111 (2014). https://doi.org/10.1016/S1773-2247(14)50016-0
  42. S. Soltanpour, W. E. Acree Jr. and A. Jouyban, AAPS. PharmSci-Tech., 10, 1153 (2009). https://doi.org/10.1208/s12249-009-9322-2
  43. A. Jouyban, A. Shayanfar and W. E. Acree Jr., Fluid Phase Equilib., 293, 47 (2010). https://doi.org/10.1016/j.fluid.2010.02.014
  44. M. Barzegar-Jalali, M. Mohammadzade, F. Martinez and A. Jouyban, J. Mol. Liq., 220, 484 (2016). https://doi.org/10.1016/j.molliq.2016.04.120
  45. X. Guo, Y.W. Cheng, L. J. Wang and X. Li, J. Chem. Eng. Data, 53, 1421 (2008). https://doi.org/10.1021/je700635r
  46. A. Jouyban, S. Romero, H.K. Chan, B. J. Clark and P. Bustamante, Chem. Pharm. Bull., 50, 594 (2002). https://doi.org/10.1248/cpb.50.594
  47. J.W. Millard, F. Alvarez-Nunez and S. Yalkowsky, Int. J. Pharm., 245, 153 (2002). https://doi.org/10.1016/S0378-5173(02)00334-4
  48. A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, Florida (2010).
  49. G.A. Rodriguez, D.R. Delgado, F. Martinez, A. Jouyban and W. E. Acree, Jr., Fluid Phase Equilib., 320, 49 (2012). https://doi.org/10.1016/j.fluid.2012.02.009
  50. S. Vahdati, A. Shayanfar, J. Hanaee, F. Martinez, W. E. Acree, Jr. and A. Jouyban, Ind. Eng. Chem. Res., 52, 16630 (2013). https://doi.org/10.1021/ie403054z
  51. G. L. Perlovich, S.V. Kurkov, A. N. Kinchin and A. Bauer-Brandl, Eur. J. Pharm. Biopharm., 57, 411 (2004). https://doi.org/10.1016/j.ejpb.2003.10.021
  52. P. Bustamante, S. Romero, A. Pena, B. Escalera and A. Reillo, J. Pharm. Sci., 87, 1590 (1998). https://doi.org/10.1021/js980149x
  53. M.A. Ruidiaz, D.R. Delgado, F. Martinez and Y. Marcus, Fluid Phase Equilib., 299, 259 (2010). https://doi.org/10.1016/j.fluid.2010.09.027
  54. R.G. Sotomayor, A.R. Holguin, A. Romdhani, F. Martinez and A. Jouyban, J. Solution Chem., 42, 358 (2013). https://doi.org/10.1007/s10953-013-9959-z
  55. Y. Marcus, J. Mol. Liq., 140, 61 (2008). https://doi.org/10.1016/j.molliq.2008.01.005
  56. Y. Marcus, Acta Chim. Slov., 56, 40 (2009).
  57. Y. Marcus, Solvent Mixtures: Properties and Selective Solvation, Marcel Dekker, New York, 180 (2002).
  58. Y. Marcus, The Properties of Solvents, Wiley, Chichester, 145 (1998).
  59. A. Henni, J. J. Hromek, P. Tontiwachwuthikul and A. Chakma, J. Chem. Eng. Data, 49, 231 (2004). https://doi.org/10.1021/je034073k
  60. R. F. Fedors, Polym. Eng. Sci., 14, 147 (1974). https://doi.org/10.1002/pen.760140211
  61. D.R. Delgado, M. A. Pena and F. Martinez, J. Solution Chem., 43, 360 (2014). https://doi.org/10.1007/s10953-014-0130-2
  62. D.R. Delgado, O. A. Almanza, F. Martinez, M. A. Pena, A. Jouyban and W. E. Acree Jr., J. Chem. Thermodyn., 97, 264 (2016). https://doi.org/10.1016/j.jct.2016.02.002

Cited by

  1. Preferential solvation of some antiepileptic drugs in {cosolvent (1) + water (2)} mixtures at 298.15 K vol.56, pp.5, 2018, https://doi.org/10.1080/00319104.2017.1376060
  2. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery vol.16, pp.3, 2019, https://doi.org/10.1080/17425247.2019.1575806
  3. Solution thermodynamics and preferential solvation of hesperidin in aqueous cosolvent mixtures of ethanol, isopropanol, propylene glycol, and n-propanol vol.57, pp.4, 2017, https://doi.org/10.1080/00319104.2018.1480022
  4. Experimental and Computational Approaches for Solubility Measurement of Pyridazinone Derivative in Binary (DMSO + Water) Systems vol.25, pp.1, 2020, https://doi.org/10.3390/molecules25010171
  5. Computational tools for solubility prediction of celecoxib in the binary solvent systems vol.299, pp.None, 2017, https://doi.org/10.1016/j.molliq.2019.112129
  6. Solubility of celecoxib in 1-propanol + water mixtures at T= (293.2-313.2) K: experimental data and thermodynamic analysis vol.58, pp.2, 2017, https://doi.org/10.1080/00319104.2018.1553241
  7. Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures vol.8, pp.10, 2017, https://doi.org/10.3390/pr8101204