DOI QR코드

DOI QR Code

Kinetic and thermodynamic characteristics of crystallization of vancomycin

  • Ha, Geon-Soo (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • Received : 2017.02.15
  • Accepted : 2017.05.24
  • Published : 2017.09.01

Abstract

We investigated the effect of the major process parameters (crystallization temperature and time) on the efficiency of the vancomycin crystallization process and conducted a kinetic and thermodynamic analysis. The most clear and uniform vancomycin crystals with the highest yield (~98%) were obtained at the optimum crystallization temperature (283 K) and time (1,440 min). The electron microscope, SEM, and XRD analyses showed that intact crystalline vancomycin was obtained when using a crystallization temperature of 283, 288, and 293 K. The kinetic analysis results revealed that the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model was suitable with a high value for $r^2$ (>0.9561) and low value for RMSD (<0.0170). Finally, from the thermodynamic analysis the Gibb's free energy change (${\Delta}G^0$), entropy change (${\Delta}S^0$), and enthalpy change (${\Delta}H^0$) were all negative, indicating that the crystallization process was spontaneous, irreversible, and exothermic.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H. Yan, D. Qi, X. Cheng, Z. Song, W. Li and B. He, J. Antibiot., 51, 750 (1998). https://doi.org/10.7164/antibiotics.51.750
  2. R. S. Griffith, J. Antimicrob. Chemother., 14, 1 (1984).
  3. S. I. Kim, C.Y. Han, H. S. Jung, J. S. Lee, S.Y. Ok and S. C. Kim, Korean J. Anesthesiol., 51, 727 (2006). https://doi.org/10.4097/kjae.2006.51.6.727
  4. United States Pharmacopoeia (USP 29): Vancomycin hydrochloride, United State Pharmacopeial Convention, Inc. (2006).
  5. Y. Javadzadeh, A. Mohammadi, N. Khoei and A. Nokhodchi, Acta Pharm., 59, 187 (2009).
  6. W. S. Kim and E.K. Lee, Korean J. Biotechnol. Bioeng., 20, 164 (2005).
  7. J.Y. Lee, K. H. Lee, H. J. Chae and J. H. Kim, Korean J. Chem. Eng., 27, 1538 (2010). https://doi.org/10.1007/s11814-010-0242-3
  8. Y.N. Kim, J. Y. Lee and J.H. Kim, Process Biochem., 46, 2068 (2011). https://doi.org/10.1016/j.procbio.2011.07.020
  9. E.A. Kwak, S. J. Kim and J.H. Kim, Korean J. Chem. Eng., 29, 1487 (2012). https://doi.org/10.1007/s11814-012-0135-8
  10. S. J. Kim and J. H. Kim, Korean J. Microbiol. Biotechnol., 42, 232 (2014). https://doi.org/10.4014/kjmb.1404.04007
  11. S. J. Kim and J. H. Kim, Korean J. Microbiol. Biotechnol., 42, 297 (2014). https://doi.org/10.4014/kjmb.1407.07006
  12. G. S Ha and J.H. Kim, Korean J. Chem. Eng., 32, 576 (2015). https://doi.org/10.1007/s11814-015-0014-1
  13. S. J. Kim and J. H. Kim, Korean J. Chem. Eng., 32, 465 (2015). https://doi.org/10.1007/s11814-014-0222-0
  14. R. Vasanthakumari, Polymer, 22, 862 (1981). https://doi.org/10.1016/0032-3861(81)90256-1
  15. Y. Weiping, L.G. Rene and S. Guy, Mater. Sci. Eng. A, 332, 41 (2002). https://doi.org/10.1016/S0921-5093(01)01715-4
  16. B. Chandan and J. P. Michael, J. Pharm. Sci., 97, 1329 (2008). https://doi.org/10.1002/jps.21138
  17. J.W. Lee, Y.T. Jung, J.W. Suh and K. S. Lee, US Patent, 7,018,814 (2006).
  18. S. Kitanovic, D. Milenovic and V. B. Veljkovic, Biochem. Eng. J., 41, 1 (2008). https://doi.org/10.1016/j.bej.2008.02.010
  19. Y.C. Cheung and J.Y. Wu, Biochem. Eng. J., 79, 214 (2013). https://doi.org/10.1016/j.bej.2013.08.009
  20. P.N. Kalu and D.R. Waryoba, Mater. Sci. Eng. A, 464, 68 (2007). https://doi.org/10.1016/j.msea.2007.01.124
  21. J. Kohout, J. Mater. Sci., 43, 1334 (2008). https://doi.org/10.1007/s10853-007-2255-9
  22. H. J. Lee, H. Ni, D.T. Wu and A. G. Ramirez, Appl. Phys. Lett., 87, 124102 (2005). https://doi.org/10.1063/1.2053348
  23. M. E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V.R.V. Ramanan and D. E. Laughlin, Scripta Mater., 48, 881 (2003). https://doi.org/10.1016/S1359-6462(02)00597-3
  24. H.W. Choi, Y. H. Kim, Y. H. Rim and Y. S. Yang, Phys. Chem. Chem. Phys., 15, 9940 (2013). https://doi.org/10.1039/c3cp50909e
  25. M.D. Kostic, N.M. Jokovic, O.S. Stamenkovic, K.M. Rajkovic, P. S. Milic and V.B.Veljkovic, Ind. Crops Prod., 52, 679 (2014). https://doi.org/10.1016/j.indcrop.2013.11.045
  26. D.D. Paunovic, S. S. Mitic, D.A. Kostic, M. N. Mitic, B.T. Stojanovic and J. L. Pavlovic, Adv. Technol., 3, 58 (2014).
  27. S. Jokic, D. Velic, M. Bilic, A. Bucic-Kojic, M. Planinc and S. Tomas, Czech J. Food Sci., 28, 206 (2010). https://doi.org/10.17221/200/2009-CJFS
  28. A. Bucic-Kojic, M. Planinic, S. Tomas, M. Bilic and D. Velic, J. Food Eng., 81, 236 (2007). https://doi.org/10.1016/j.jfoodeng.2006.10.027
  29. J. H. Kim, K.Y. Kim, D. Kim, H. S. Park, S. C. Lee and S. I. Lee, J. Korean Soc. Environ. Eng., 30, 207 (2008).
  30. K. J. Kim, Prospect. Ind. Chem., 4, 1 (2001).
  31. V.D. Sameer and N.D. Rajesh, Ind. Eng. Chem. Res., 48, 7581 (2009). https://doi.org/10.1021/ie900248f
  32. C.V.R. Rodriguez, E.M. Sanchez, J.G. Hernandez, E. Prokhorov, J.M. Saldana and G.T. Martinez, J. Surf. Eng. Mater. Adv. Technol., 2, 44 (2012).
  33. P. Saha and S. Chowdhury, Insight into adsorption thermodynamics, Thermodynamics Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
  34. O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, 22 (1999).
  35. A. Farzadi, Materialwiss. Werkst., 46, 1218 (2015). https://doi.org/10.1002/mawe.201500445
  36. J.N. Park and J. H. Kim, Process Biochem., 53, 224 (2017). https://doi.org/10.1016/j.procbio.2016.11.014
  37. C.G. Lee and J. H. Kim, Process Biochem., In Press (2017).

Cited by

  1. Determination and correlation of the solubility of L-arabinose and D-galactose in binary solvent mixtures from 278.15 to 333.15 K vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0116-7