DOI QR코드

DOI QR Code

Effect of a roughness factor on electrochemical reduction of 4-nitrophenol using porous gold

  • Kim, Jieun (Department of Chemical Engineering Kwangwoon University) ;
  • Han, Soomin (Department of Chemical Engineering Kwangwoon University) ;
  • Kim, Younghun (Department of Chemical Engineering Kwangwoon University)
  • Received : 2017.03.02
  • Accepted : 2017.05.17
  • Published : 2017.09.01

Abstract

Porous gold (PAu) was prepared by a paper-based templating method and was used to investigate the effect of a roughness factor on the electrochemical reduction of 4-nitrophenol (4-NP). Bare and palladium-loaded PAu electrodes showed open porous structures and large surface areas, compared to the bulk Au electrode. Moreover, its backbone structure was adjustable with the intrinsic pore size of the filter paper. As compared to PAu and bulk Au electrodes, the Pd/PAu electrode showed high electrocatalytic activity and a rapid reduction rate in a 4-NP reduction test. The results for cyclic voltammetry and kinetic analysis revealed that intraparticle diffusion through a porous structure and an electrocatalytically-active surface area (i.e., a high roughness factor) are important factors contributing to the enhancement of the electrocatalytic performance of 4-NP reduction.

Keywords

Acknowledgement

Supported by : Korea Environmental Industry and Technology Institute, National Research Foundation of Korea

References

  1. X. X. Jiao, H.Q. Luo and N.B. Li, J. Electroanal. Chem., 691, 83 (2013). https://doi.org/10.1016/j.jelechem.2012.12.013
  2. F. Lin and R. Doong, Appl. Catal. A Gen., 486, 32 (2014). https://doi.org/10.1016/j.apcata.2014.08.013
  3. S. Saha, A. Pal, S. Kundu, S. Basu and T. Pal, Langmuir, 26, 2885 (2010). https://doi.org/10.1021/la902950x
  4. K. L. Wu, X.W. Wei, X. M. Zhou, D. H. Wu, X.W. Liu, Y. Ye and Q. Wang, J. Phys. Chem. C, 115, 16268 (2011). https://doi.org/10.1021/jp201660w
  5. Q. Shi, M. Chen and G. Diazo, Electrochmi. Acta, 114, 693 (2013). https://doi.org/10.1016/j.electacta.2013.10.108
  6. X. Wang, Y. Cui, Y. Wang, X. Song and J. Yu, Inorg. Chem., 52, 10708 (2013). https://doi.org/10.1021/ic401357s
  7. M. An, J. Cui and L. Wang, J. Phys. Chem. C, 118, 3062 (2014). https://doi.org/10.1021/jp4092305
  8. Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen and Y. Ding, Electrochem. Commun., 11, 1365 (2009). https://doi.org/10.1016/j.elecom.2009.05.004
  9. J. Kim, C. Yeom and Y. Kim, Korean. J. Chem. Eng., 33, 1855 (2016). https://doi.org/10.1007/s11814-016-0033-6
  10. S.Y. Oh, R. Selvaraj and Y. Kim, J. Ind. Eng. Chem., 26, 95 (2015). https://doi.org/10.1016/j.jiec.2014.11.019
  11. B. J. Park, Y. S. Sa, Y. H. Kim and Y. Kim, Bul. Korean Chem. Soc., 33, 100 (2012). https://doi.org/10.5012/bkcs.2012.33.1.100
  12. K. J. J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz and N. M. Markovic, Electrochim. Acta, 53, 3181 (2008). https://doi.org/10.1016/j.electacta.2007.11.057
  13. M. Shao, J. H. Odell, S. I. Choi and Y. Xia, Electrochem. Commun., 31, 46 (2013). https://doi.org/10.1016/j.elecom.2013.03.011
  14. F. Xia, X. Xu, X. Li, L. Zhang, L. Zhang, H. Qiu, W. Wang, Y. Liu and J. Gao, Ind. Eng. Chem. Res., 53, 10576 (2014). https://doi.org/10.1021/ie501142a
  15. Y. Kim, C. Kim, I. Choi, S. Rengaraj and J. Yi, Environ. Sci. Technol., 38, 924 (2004). https://doi.org/10.1021/es0346431

Cited by

  1. Palladium oxide decorated transition metal nitride as efficient electrocatalyst for hydrogen evolution reaction vol.855, pp.2, 2017, https://doi.org/10.1016/j.jallcom.2020.157511
  2. Photothermal-Mediated Catalytic Reduction of 4-Nitrophenol Using Poly(N-isopropylacrylamide-acrylamide) and Hollow Gold Nanoparticles vol.3, pp.5, 2021, https://doi.org/10.1021/acsapm.1c00301