DOI QR코드

DOI QR Code

Synthesis and characterization of physicochemical properties of hydrophilic imidazolium-based ionic liquids

  • Received : 2017.02.17
  • Accepted : 2017.05.29
  • Published : 2017.09.01

Abstract

A series of ionic liquids based on Octyl and Decyl methylimidazolium with different anions such as chloride, glycinate, dihydrogen phosphate and trihydrogen diphosphate, were synthesized and characterized by $^1HNMR$ and elemental analysis. IL containing trihydrogen diphosphate anion, was synthesized for the first time. Physicochemical properties, including density, viscosity, surface tension, refractive index, and pH, were measured in temperature range 283.15 to 363.15 K and atmospheric pressure. The effects of temperature, alkyl chain, and anion type on physicochemical properties were investigated. The results revealed that the physicochemical properties decreased as a function of temperature. Unlike viscosity, other properties, such as density, surface tension, refractive index and pH values, decreased, while alkyl chain length increased. Understanding ILs properties and determining their unique abilities helps researchers to use them in new applications. These long alkyl chain ILs, are being used as surfactants to reduce Oil/Water interfacial tension in EOR process.

Keywords

References

  1. R.D. Rogers and G.A. Voth, Acc. Chem. Res., 40, 1077 (2007). https://doi.org/10.1021/ar700221n
  2. W. M. Nelson, Are Ionic Liquids Green Solvents? in Ionic Liquids, Industrial Applications for Green Chemistry, R.D. Rogers and K. R. Seddon Eds., ACS Symp. Ser. 818, American Chemical Society Publications (2002).
  3. M. J. Earle and K.R. Seddon, Ionic liquids: Green solvents for the future, in Clean Solvents, Alternative Media for Chemical Reactions and Processing, M. A. Abraham and L. Moens Eds., ACS Symp. Ser. 819, American Chemical Society Publications (2002).
  4. O. Aschenbrenner, S. Supasitmongkol, M. Taylor and P. Styring, Green Chem., 11, 1217 (2009). https://doi.org/10.1039/b904407h
  5. J. Hekayati, A. Roosta and J. Javanmardi, J. Mol. Liq., 225, 118 (2017). https://doi.org/10.1016/j.molliq.2016.11.031
  6. P. M. Dean, J. M. Pringle and D.R. MacFarlane, Phys. Chem. Chem. Phys., 12, 9144 (2010). https://doi.org/10.1039/c003519j
  7. O. Zech, A. Stoppa, R. Buchner, and W. Kunz, J. Chem. Eng. Data, 55, 1774 (2010). https://doi.org/10.1021/je900793r
  8. E. M. Siedlecka, M. Czerwicka, S. Stolte and P. Stepnowski, Curr. Org. Chem., 15, 1974 (2011). https://doi.org/10.2174/138527211795703630
  9. M. H. Jose-Alberto and A. Jorge, Current Knowledge and Potential Applications of Ionic Liquids in the Petroleum Industry, in Ionic Liquids: Applications and Perspectives, A. Kokorin, Ed., ed Rijeka, InTech publications, Croatia (2011).
  10. M. S.B. Dahbag, M. E. Hossain and A.A. AlQuraishi, Energy Fuels, 30, 9260 (2016). https://doi.org/10.1021/acs.energyfuels.6b01712
  11. Y. Hou, Y. Ren, W. Peng, S. Ren and W. Wu, Ind. Eng. Chem. Res., 52, 18071 (2013). https://doi.org/10.1021/ie403849g
  12. T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv. Mater., 22, 1196 (2010). https://doi.org/10.1002/adma.200902184
  13. M. Smiglak, J. M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D.R. MacFarlane and R.D. Rogers, Chem. Commun., 50, 9228 (2014). https://doi.org/10.1039/C4CC02021A
  14. N.V. Plechkova and K.R. Seddon, Chem. Soc. Rev., 37, 123 (2008). https://doi.org/10.1039/B006677J
  15. D. Wei1 and A. Ivaska, Anal. Chim. Acta, 607, 126 (2008). https://doi.org/10.1016/j.aca.2007.12.011
  16. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno and B. Scrosati, Nat. Mater., 8, 621 (2009). https://doi.org/10.1038/nmat2448
  17. J. P. Hallett and T. Welton, Chem. Rev., 111, 3508 (2011). https://doi.org/10.1021/cr1003248
  18. D. Han and K. H. Row, Molecules, 15, 2405 (2010). https://doi.org/10.3390/molecules15042405
  19. H.O. Bourbigou, L. Magna and D. Morvan, Appl. Catal., A, 373, 1 (2010). https://doi.org/10.1016/j.apcata.2009.10.008
  20. J. L. Wang, L. L. Wang, R. Feng and Y. Zhang, Solid State Ionics, 278, 144 (2015). https://doi.org/10.1016/j.ssi.2015.06.010
  21. A. Bera and H. Belhaj, J. Mol. Liq., 224, 177 (2016). https://doi.org/10.1016/j.molliq.2016.09.105
  22. M. S. Benzagouta, I. M. AlNashef, W. Karnanda and K. A. Khidir, Korean J. Chem. Eng., 11, 2108 (2013).
  23. I. Dinares, Cristina G. de Miguel, A. Ibanez, N. Mesquida and E. Alcalde, Green Chem., 11, 1507 (2009). https://doi.org/10.1039/b915743n
  24. E. Alcalde, I. Dinares, A. Ibanez and N. Mesquida, Molecules, 17, 4007 (2012). https://doi.org/10.3390/molecules17044007
  25. S. Demir, Y. Damarhan and I. Ozdemir, J. Mol. Liq., 204, 210 (2015). https://doi.org/10.1016/j.molliq.2015.01.051
  26. L. Xue, E. Gurung, G. Tamas, Y.P. Koh, M. Shadeck, S.L. Simon, M. Maroncelli and E. L. Quitevis, J. Chem. Eng. Data, 61, 1078 (2016). https://doi.org/10.1021/acs.jced.5b00658
  27. M. Shamsipur, A. A. Miran Beigi, M. Teymori, S. M. Pourmortazavi and M. Irandoust, J. Mol. Liq., 157, 43 (2010). https://doi.org/10.1016/j.molliq.2010.08.005
  28. P. Wasserscheid and T. Welton, in Ionic Liquids in Synthesis 2nd Ed., Wiley publications, New York (2007).
  29. M. Shahrom and C.D. Wilfred, J. Appl. Sci., 14, 1067 (2014). https://doi.org/10.3923/jas.2014.1067.1072
  30. J. Gao, J. Liu, B. Li, W. Liu, Y. Xie, Y. Xin, Y. Yin, X. Jie, J. Gu and Z. Zou, New J. Chem., 35, 1661 (2011). https://doi.org/10.1039/c1nj20361d
  31. M. Claros, H.R. Galleguillos, I. Brito, T. filo and A. Graber, J. Chem. Eng. Data, 57, 2147 (2012). https://doi.org/10.1021/je3000876
  32. K.R. Seddon, A. Stark and M. Jose Torr, ACS Symp. Ser., 819, 34 (2002).
  33. T. Singh and A. Kumar, J. Solution. Chem., 38, 1043 (2009). https://doi.org/10.1007/s10953-009-9429-9
  34. N. Mac Dowell, F. Llovell, N. Sun, J.P. Hallett, A. George, P.A. Hunt, T. Welton, B. A. Simmons and L. F. Vega, J. Phys. Chem B., 118, 6206 (2014). https://doi.org/10.1021/jp501619y
  35. M. S. AlTuwaim, K.H. A. E. Alkhaldi, A. S. Al-Jimaz and A. A. Mohammad, J. Chem. Eng. Data, 59, 1955 (2014). https://doi.org/10.1021/je500093z
  36. X. J. Yan, S. N. Li, Q. G. Zhai, Y. C. Jiang and M. C. Hu, J. Chem. Eng. Data, 59, 1411 (2014). https://doi.org/10.1021/je4009238
  37. E. Gomez, B. Gonzalez, A. Dominguez, E. Tojo and J. Tojo, J. Chem. Eng. Data, 51, 969 (2006).
  38. O.B. Ghanem, M. I. Abdul Mutalib, J. M. Leveque, G. Gonfa, C. F. kait and M. El-Harbawi, J. Chem. Eng. Data, 60, 1756 (2015). https://doi.org/10.1021/je501162f
  39. G. Freire, A.R. Teles, R. A. S. Ferreira, L.D. Carlos, J. A. Lopes-da-Silva and J. A. P. Coutinho, Green Chem., 13, 3173 (2011). https://doi.org/10.1039/c1gc15930e
  40. H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan and M. Watanabe, J. Phys. Chem. B., 109, 6103 (2005). https://doi.org/10.1021/jp044626d
  41. M. Moosavi, F. Khashei, A. Sharifi and M. Mirzaei, Ind. Eng. Chem. Res., 55, 9087 (2016). https://doi.org/10.1021/acs.iecr.6b02881
  42. E. J. Gonzalez, L. Alonso and A. Dominguez, J. Chem. Eng. Data, 51, 1446 (2006). https://doi.org/10.1021/je060123k
  43. N. Ren, Y. Gong, Y. Lu, H. Meng and C. Li, J. Chem. Eng. Data, 59, 189 (2014). https://doi.org/10.1021/je400004j
  44. L.G. Sanchez, J.R. Espel, F. Onink, G. Wytze Meindersma and A. B. de Haan, J. Chem. Eng. Data, 54, 2803 (2009). https://doi.org/10.1021/je800710p
  45. M. Moosavi, F. Khashei, A. Sharifi and M. Mirzaei, J. Chem. Thermodyn., 107, 1 (2017). https://doi.org/10.1016/j.jct.2016.12.009
  46. M. H. Ghatee and A.R. Zolghadr, Fluid Phase Equilib., 263, 168 (2008). https://doi.org/10.1016/j.fluid.2007.10.004