DOI QR코드

DOI QR Code

Augmented Reality and Virtual Reality Technology Trend for Unmanned Arial Vehicles

무인항공기를 위한 증강/가상현실 기술 동향

  • Published : 2017.10.01

Abstract

With the advances of high-performance, lightweight hardware components and control software, unmanned aerial vehicles (UAVs) have expanded in terms of use, not only for military applications but also for civilian applications. To complete their task at a remote location, UAVs are generally equipped with a camera, and various sensors and types of hardware devices can be attached according to the particular task. When UAVs capture video images and transmit them into the user's interface, augmented reality (AR) and virtual reality (VR) technologies as a user interface may have advantages in controlling the UAV. In this paper, we review AR and VR applications for UAVs and discuss their future directions.

Keywords

Acknowledgement

Grant : 실세계 연계 실감형 e-레저 콘텐츠 서비스 기술 개발

Supported by : 한국콘텐츠진흥원

References

  1. 이아름, "드론 시장 및 산업 동향," 융합 Weekly TIP - Industry, vol. 53, 2017. 1. 9.
  2. J. Artieda et al., "Visual 3-D SLAM from UAVs," J. Intell. Robotic Syst., vol. 55, no. 4-5, Aug. 2009, pp. 299-321. https://doi.org/10.1007/s10846-008-9304-8
  3. S. Siebert et al., "Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System," Autom. Construction, vol. 41, May 2014, pp. 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  4. ICAO, Manual on Remotely Piloted Aircraft Systems (RPAS), 1st edition, Doc 10019 AN/507, 2015.
  5. US Department of Defense (DoD), "Unmanned Aircraft Systems Roadmap 2005-2030," Aug. 4, 2005. Available: https://fas.org/irp/program/collect/ uav_roadmap2005.pdf
  6. UK Civil Aviation Authority (CCA), "Unmanned Aircraft System Operations in UK: Airspace - Guidance," 6th edition, CAP 722, Mar. 31, 2015, Available: http://www.caa.co.uk/home/
  7. S. Zollmann et al., "FlyAR: Augmented Reality Supported Micro Aerial Vehicle Navigation," IEEE Trans. Visual. Comput. Graph., vol. 20, no. 4, Apr. 2014, pp. 560-568. https://doi.org/10.1109/TVCG.2014.24
  8. S. Weiss et al., "Monocular-SLAM-Based Navigation for Autonomous Micro Helicopters in GPS-Denied Environments," J. Field Robotics, vol. 28, no. 6, 2011, pp. 854-874. https://doi.org/10.1002/rob.20412
  9. M. Sun et al., "Real-Time MUAV Video Augmentation with Geo-information for Remote Monitoring," Int. Conf. Geo- Inform. Technol. Natural Disaster Manage., Mississauga, Canada, Oct. 9-11, 2013, pp. 114-118.
  10. S. Lange et al., "Autonomous Corridor Flight of a UAV Using a Low-Cost and Light-Weight RGB-D Camera," in Advances in Autonomous Mini Robots, Heidelberg, Germany: Springer, Jan. 2012, pp. 183-192.
  11. 강왕구, "전 세계 무인이동체 시장 2020년까지 연평균 22% 성장 전망," 나라경제, 2017. 4, pp. 10-11. Available: http://eiec.kdi.re.kr/publish/nara/index.jsp
  12. 윤광준, "국내.외 드론 산업 현황 및 활성화 방안," 부동산포커스, vol. 95, 2016. 4, pp. 4-14.
  13. 국가과학기술심의회, "무인이동체 산업활성화 및 일자리 창출을 위한 무인이동체 발전 5개년 계획(안) (2016-2020)," 2016. 6. 30.
  14. 박세중 외, "무인이동체 운용을 위한 주요국의 기술개발 계획 및 정책적 시사점," 한국통신학회 추계종합학술발표회, 2016, pp. 22-23.
  15. 김희욱(ETRI) 외, "무인기 제어용무선통신 기술및 표준화 동향," 전자통신동향분석, 제30권제3호, 2015. 6. pp. 74-83. https://doi.org/10.22648/ETRI.2015.J.300308
  16. 국토교통부첨단항공과, "국토부, 드론시범사업 지역 3곳.사업자 10개 추가 선정," 국토교통부 보도자료, 2016. 12. 29. Available: https://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95078670
  17. 국토교통부 첨단항공과, "드론의 'A to Z'를 한눈에... 국토부, 드론컨퍼런스개최," 국토교통부보도자료, 2017. 3. 7. Available: https://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=4&id=95078933
  18. 방준성 외, "VR/AR 게임기술 동향," 전자통신동향분석, 제31권제1호, 2016. 2, pp. 146-156. https://doi.org/10.22648/ETRI.2016.J.310114
  19. 양웅연, "가상현실 및 증강현실을 위한 착용형 디스플레이 발전동향," 정보통신산업진흥원주간기술동향, 2014. 6. 18.
  20. S. Thon et al., "Flying a Drone in a Museum - an Augmented-Reality Cultural Serious Game in Provence," Digital Heritage Int. Congress, Oct. 28-Nov. 1, 2013, pp. 669-676. Video: https://vimeo.com/69798135
  21. D. Mirk et al., "Virtual Tourism with Drones: Experiments and Lag Compensation," Micro Aerial Veh. Netw., Syst., Applicat. Civilian Use, Italy, May 18, 2015, pp. 45-50.
  22. K. Yang et al., System and Method for Enabling Virtual Sightseeing Using Unmanned Aerial Vehicles, US 14/795652, filed July 9, 2015.
  23. W. Honig et al., "Mixed Reality for Robotics," IEEE/RSJ Int. Conf. Intell. Robots Syst., Germany, Sept. 28-Oct. 2, 2015, pp. 5282-5287.
  24. J. Chakareski, "Aerial UAV-IoT Sensing for Ubiquitous Immersive Communication and Virtual Human Teleportation," Submitted to INFOCOM2017 on March 12, 2017. Available: https://arxiv.org/abs/1703.04192
  25. Ed Darack, "Drones + Augmented Reality = Help for Firefighters," AIR&SPACE, Jan. 20, 2017. Available: http://www.airspacemag.com/articles/drones-augmentreality-180961874/ YouTube: https://youtu.be/omGoz66xHU8
  26. SPAR-3D, "How Drone Videos and Augmented Reality Can Help Monitor Construction Projects," SPAR3D Blog, Mar. 4, 2016. Available: http://www.spar3d.com/blogs/guest-blog/monitor-construction-with-ar-from-dronevideos/YouTube: https://youtu.be/aPNwXIyu0ZY
  27. Q. Zhi-hua et al., "Design of UAV Telepresence and Simulation Platform Based on VR," Int. Conf. Cyberworlds, Hangzhou, China, Sept. 22-24, 2008, pp. 520-524.
  28. W. Huang et al., "A 3D GIS-Based Interactive Registration Mechanism for Outdoor Augmented Reality System," Int. J. Expert Syst. Applicat., vol. 55, no. C, Aug 2016, pp. 48-58. https://doi.org/10.1016/j.eswa.2016.01.037
  29. S. Zlatanova et al., "3D GIS for Outdoor AR Applications," Int. Symp. Mobile Multimedia Syst. Applicat., Netherlands, Dec. 6, 2002, pp. 117-124.
  30. J. Engel et al., "Scale-Aware Navigation of a Low-Cost Quadrocopter with a Monocular Camera," Robotics Autonomous Syst., vol. 62, no. 11, Nov. 2014, pp. 1646-1656. https://doi.org/10.1016/j.robot.2014.03.012
  31. K. Ikeuchi et al., "KinecDrone: Enhancing Somatic Sensation to Fly in the Sky with Kinect and AR.Drone," Int. Conf. Augmented Human, Kobe, Japan, Mar. 7-8, 2014, pp. 53:1-53:2.
  32. J. Wither et al., "Pictorial Depth Cues for Outdoor Augmented Reality," IEEE Int. Symp. Wearable Comput., Osaka, Japan, Oct. 18-21, 2005, pp. 92-99.
  33. M.A. Livingston et al., "Resolving Multiple Occluded Layers in Augmented Reality," IEEE/ACM Int. Symp. Mixed Augmented Reality, Tokyo, Japan, Oct. 10, 2003, pp. 56-65.
  34. A. Dey et al., "Evaluating Depth Perception of Photorealistic Mixed Reality Visualizations for Occluded Objects in Outdoor Environments," IEEE Symp. 3D User Interfaces (3DUI), Waltham, MA, USA, March 20-21, 2010.
  35. S. Kasahara et al., "exTouch: Spatially-Aware Embodied Manipulation of Actuated Objects Mediated by Augmented Reality," Int. Conf. TEI, Barcelona, Spain, Feb. 10-13, 2013, pp. 223-228.
  36. J.P. Hansen et al., "The Use of Gaze to Control Drones," Symp. Eye Tracking Res. Applicat., Safety Harbor, FL, USA, Mar. 26-28, 2014, pp. 27-34.
  37. G. Lan et al., "Development of UAV Based Virtual Reality System," Int. Conf. MFI, Baden-Baden, Germany, Sept. 19-21, 2016, pp. 481-486.
  38. C. Hoppe et al., "Photogrammetric Camera Network Design for Micro Aerial Vehicles," Comput. Vis., Winter Workshop, 2012.
  39. 방준성 외, "가상현실/증강현실 원격 협업 기술 동향," 전자통신동향분석, 제32권 제6호(원고게재예정), 2017. 12. 1.