References
- J. Pons, J. Prades-Nebot, A. Albiol and J. Molina, "Fast motion detection in compressed domain for video surveillance.", Electronics letters Vol. 38, No. 9, pp. 409-411, 2002. https://doi.org/10.1049/el:20020290
- M. Tiwari and R. Singhai, "Improved Algorithm for Object Tracking in Video Camera Network", Indian Journal of Science and Technology, Vol. 10, No. 10, pp. 1-10, 2017.
- M. M. Bhajibhakare and P. K. Deshmukh, "Detection and tracking of moving object for surveillance system.", International Journal of Application of Innovation in Engineering and Management Vol. 2, No. 12, pp. 298-301, 2013.
- Q. Wang and Z. Gao, "Study on a Real-time Image Object Tracking System", International Symposium on Computer Science and Computational Technology, Vol. 2, pp. 788-791, 2008.
- Z. Zhou, D. We, X. Peng, Z. Zhu and K. Luo, "Object Tracking Based on Camshift with Multi-feature Fusion", Journal of Software, Vol. 9, No. 1, pp. 147-153, 2014.
- A. Yilmaz, O. Javed and M. Shah "Object Tracking: A survey", ACM Computing Surveys, Vol. 38, No. 4, Article. 13, 2006.
- K. Werner, M. Kampel, "Interest point based tracking", International Conference on Pattern Recognition, pp. 3549-3552, 2010.
- T. M. Barroso and P. F. Whelan, "Enhancing SURF Feature Matching Using Colour Histograms", Irish Machine Vision and Image Processing Conf., pp. 111-112. 2011.
- M. Du, J. Wang, J. Li, H. Cao, G. Cui, J. Lv and X. Chen, "Robot Robust Object Recognition based on Fast SURF Feature Matching", Chinese Automation Congress, pp. 581-586, 2013.
- Y. Kim, W. Han, Y. H. Lee, C. G. Kim, and K. J. Kim, "Object Tracking and Recognition Based on Reliability Assessment of Learning in Mobile Environments". Wireless Personal Communications, Vol. 94, No. 2, pp. 267-282, 2017. https://doi.org/10.1007/s11277-016-3292-y
- K. Du, Y. Ju, Y. Jin, G. Li, Y. Li and S. Qian, "Object Tracking based on Improved MeanShift and SIFT", 2nd Int. Conf. on Consumer Electronics, pp. 2716-2719, 2012.
- J. Y. Zhang, H. Y. Wu, S. Chen and D. S. Xia, "The Target Tracking Method Based on Camshift Algorithm Combined with SIFT", Advanced Materials Research, Vol. 186, pp. 281-286, 2011. https://doi.org/10.4028/www.scientific.net/AMR.186.281
- H. Ahn and Y. Lee, "Performance analysis of object recognition and tracking for the use of surveillance system", Journal of Ambient Intelligence and Humanized Computing Vol. 7, No. 5, pp. 673-679, 2016. https://doi.org/10.1007/s12652-015-0325-4
- S. A. Dave, M. S. Nagmode and A. Jahagirdar, "Statistical Survey on Object Detection and Tracking Methodologies", International Journal of Scientific and Engineering Research, Vol. 4, Issue. 3, 2013.
- D. Comaniciu, V. Ramesh and P. Meer, "Kernel-Based Object Tracking", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 5, pp. 564-577, 2003. https://doi.org/10.1109/TPAMI.2003.1195991
- I. Leichter, M. Lindenbaum and E. Rivlin, "Mean Shift tracking with multiple reference color histograms", Computer Vision and Image Understanding, Vol. 114, No. 3, pp. 400-408, 2010. https://doi.org/10.1016/j.cviu.2009.12.006
- J. Wang, F. He, X. Zhang and Y. Gao, "Tracking Objects through Occlusions Using Improved Kalman Filter", International Conference on Advanced Computer Control, pp. 23-228, 2010
- Y. Yue, Y. Gao and X. Zhang, "An Improved Camshift Algorithm Based on Dynamic Background", International Conference on Information Science and Engineering, pp. 1141-1144, 2009.
- L. Juan and O. Gwun, "A Comparison of SIFT, PCA-SIFT and SURF", International Journal of Image Processing, Vol. 3, Issue. 4, pp. 143-152, 2009.
- S. Ha and Y. Moon, "Multiple Object Tracking Using SIFT Features and Location Matching", International Journal of Smart Home, Vol. 5, No. 4, pp. 17-26, 2011.
- Y. Ke and R. Sukthankar, "PCA-SIFT: A More Distinctive Representation for Local Image Descriptors", Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 506-513, 2004.
- D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, Vol. 60, Issue. 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- M. Brown and D. Lowe, "Invariant Features from Interest Point Groups", British Machine Vision Conference, pp. 656-665, 2002.
- M. Stommel and O. Herzog, "Binarising SIFT-Descriptors to Reduce the Curse of Dimensionality in Histogram-Based Object Recognition", International Journal of Signal Processing, Image Processing and Pattern Recognition, pp. 320-327, 2009.
- H. Bay, A. Ess, T. Tuytelaars and L. V. Gool, "Speeded-Up Robust Features (SURF)", Computer Vision and Image Understanding, Vol. 110, Issue. 3, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
- P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 511-518, 2001.
- D. Exner, E. Bruns, D. Kurz and A. Grundhofer, "Fast and Robust CAMShift Tracking", IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 9-16, 2010.
- N. Q. Nguyen, S. F. Su, Q. V. Tran, V. T. Nguyen, and J. T. Jeng, "Real time human tracking using improved CAM-shift" In Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017 Joint 17th World Congress of International, IEEE. pp. 1-5, 2017.
- R. Stolkin, I. Florescu and G. Kamberov, "An Adaptive Background Model for Camshift with a Moving Camera", 6th Int. Conf. on Advances in Pattern Recognition, pp. 261-265, 2007.
- A. Basit, M. N. Dailey, P. Laksanacharoen, and J. Moonrinta, "Fast Target Redetection for CAMSHIFT using Back-projection and Histogram Matching", Int. Conf. on Computer Vision Theory and Applications, Vol. 3, pp. 507-514, 2014.
- X. Liu, H. Chu and P. Li, "Research of the Improved Camshift Tracking Algorithm", Int. Conf. on Mechatronics and Automation, pp. 968-972, 2007.
- A. R. J. Francois, "CAMSHIFT Tracker Design Experiments with Intel OpenCV and SAI", International Conference on Pattern Recognition, No.4, pp. 1-4, 2004.
- https://sites.google.com/site/jingjingmengsite/