DOI QR코드

DOI QR Code

Transcriptomic Profile Analysis of Jeju Buckwheat using RNA-Seq Data

NA-Seq를 이용한 제주산 메밀의 발아초기 전사체 프로파일 분석

  • Han, Song-I (Subtropical/tropical Organism Gene Bank, Jeju National University) ;
  • Chung, Sung Jin (JeromBiomedicine Co.,ltd.) ;
  • Oh, Dae-Ju (Jeju Biodiversity Research Institute, Jeju Technopark) ;
  • Jung, Yong-Hwan (Jeju Biodiversity Research Institute, Jeju Technopark) ;
  • Kim, Chan-Shick (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju Naional University) ;
  • Kim, Jae-hoon (Subtropical/tropical Organism Gene Bank, Jeju National University)
  • 한송이 (제주대학교 아열대.열대생물유전자은행센터) ;
  • 정성진 ((주)제롬바이오메디슨) ;
  • 오대주 ((재)제주테크노파크 생물종다양성연구소) ;
  • 정용환 ((재)제주테크노파크 생물종다양성연구소) ;
  • 김찬식 (제주대학교 생명공학부) ;
  • 김재훈 (제주대학교 아열대.열대생물유전자은행센터)
  • Received : 2017.12.20
  • Accepted : 2018.01.05
  • Published : 2018.01.31

Abstract

In this study, transcriptome analysis was conducted to collect various information from Fagopyrum esculentum and Fagopyrum tataricum during the early germination stage. Total RNA was extracted from the seeds and at 12, 24, and 36 hrs after germination of Jeju native Fagopyrum esculentum and Fagopyrum tataricum and sequenced using the Illumina Hiseq 2000 platform. Raw data analysis was conducted using the Dynamic Trim and Lengths ORT programs in the SolexaQA package, and assembly and annotation were performed. Based on RNA-seq raw data, we obtained 16.5 Gb and 16.2 Gb of transcriptome data corresponding to about 84.2% and 81.5% of raw data, respectively. De novo assembly and annotation revealed 43,494 representative transcripts corresponding to 47.5Mb. Among them, 23,165 sequences were shown to have similar sequences with annotation DB. Moreover, Gene Ontology (GO) analysis of buckwheat representative transcripts confirmed that the gene is involved in metabolic processes (49.49%) of biological processes, as well as cell function (46.12%) in metabolic process, and catalytic activity (80.43%) in molecular function In the case of gibberellin receptor GID1C, which is related to germination of seeds, the expression levels increased with time after germination in both F. esculentum and F. tataricum. The expression levels of gibberellin 20-oxidase 1 were increased within 12 hrs of gemination in F. esculentum but continuously until 36 hrs in F. tataricum. This buckwheat transcriptome profile analysis of the early germination stage will help to identify the mechanism causing functional and morphological differences between species.

본 연구에서는 메밀의 발아초기에 발현되는 전사체의 다양한 정보 수집을 위해 양절메밀과 대관 3-3호의 RNA를 추출하여 전사체 분석을 수행하였다. 제주산 양절메밀과 대관3-3호의 종자 및 발아 후 12, 24, 36시간별로 total RNA를 추출하고, llumina Hiseq 2000 플랫폼을 사용하여 시퀀싱 하였다. SolexaQA package의 DynamicTrim과 LengthsORT 프로그램으로 이용하여 raw 데이터 분석을 실시한 후, 어셈블리(assembly)와 annotation을 수행하였다. RNA-seq raw 데이터로부터 약 84.2%, 81.5%에 해당하는 16.5Gb, 16.2Gb의 transcriptome 데이터를 확보하였다. 47Mb에 해당하는 43,494개의 대표적인 전사체(representative transcripts)를 확보하였고, 그 중에서 annotation DB와 서열 유사도를 갖는 서열은 23,165개로 확인되었다. 메밀의 representative transcripts 유전자의 유전자 온톨로지(gene ontology) 분석결과, biological process는 metabolic process (49.49%)에서, cellular components는 cell (46.12%)에서, molecular function은 catalyltic activity (80.43%)에서 유전자가 많이 분포되어 있는 것을 확인하였다. 종자의 발아에 관련된 gibberellin receptor GID1C의 경우에는 양절메밀, 대관 3-3호의 발현양이 모두 시간이 지남에 따라 증가되는 것을 확인할 수 있었으며, gibberellin 20-oxidase1의 경우에는 양절메밀에서는 발아 후 12 시간이내에 증가되었으나, 대관 3-3호에서는 36시간까지 유전자 발현양 증가하는 것을 확인할 수 있었다. 이러한 제주산 메밀의 발아초기 단계별 전사체 분석 데이터는 종간의 기능적, 형태학적 차이를 일으키는 메커니즘 규명에 도움을 줄 것으로 사료된다.

Keywords

References

  1. HS Lee, JM LEE, YH Yoon, EJ Cho, S Lee, "The protective Effects of Common and Tartary Buckwheats against Oxidative Stress and Gastric Cancer", Cancer Prevention Research, vol. 16, no. 3, pp. 249-254, 2011.
  2. KJ Chang, GS Seo, YS, Kim, DS Huang, JI Park, JJ Park, YS Lim, BJ Park, CH Park, MH Lee, "Components and Biological Effects of Fermented Extract from Tartary Buckwheat Sprouts", Korean J. Plant Res, vol. 23, no. 2, pp. 131-137, 2010.
  3. ZL Zhang, ML Zhou, Y Tang, FL Li, YX Tang, JR Shao, WT Xue, YM Wu, "Bioactive Compounds in Functional Buckwheat Food", Food Research International, vol. 49, pp. 389-395, 2012. DOI: https://doi.org/10.1016/j.foodres.2012.07.035
  4. JA Gimenez-Bastida, H Zielinsk, M Piskula, D Zielinska, D Szawara-Nowak, "Buckwheat Bioactive Compounds, Their Derived Phenolic Metabolites and Their Health Benefits", Mol. Nutr. Food Res, vol. 61, no. 7, 2017. DOI: https://doi.org/10.1002/mnfr.201600475
  5. Q Tian, D Li, BS Patil, "Identification and Determination of Flavonoids in Buckwheat (Fagopyrum esculentum Moench, Polygonaceae) by High-performance Liquid Chromatography with Electrospray Ionisation Mass Spectrometry and Photodiode Arrat Ultraviolet Detection", Phytochemical Analysis, vol. 13, pp. 251-256, 2002. DOI: https://doi.org/10.1002/pca.649
  6. N Fanbjan, J Rode, IJ Kosir, Z Wang, Z Zhang, I Kreft. "Tartary Buckwheat (Fagopyrum tataricum Gaertn.) as a Source of Dietary Rutin and Quercitrin", J. Agric Food Chem, vol. 51, no. 22, pp. 6452-6455, 2003. DOI: https://doi.org/10.1021/jf034543e
  7. CC Lee, SR Shen, YJ Lai, SC Wu, "Rutin and Quercetin, Bioactive Compounds from Tartary Buckwheat, Prevent Liver Inflammatory Injury", Food Funct, vol. 4, no. 5, pp. 794-802, 2013. DOI: https://doi.org/10.1039/c3fo30389f
  8. X Zhou, Q Wang, Y Yang, Y Zhou, W Tang, Z Li, "Anti-infection Effects of Buckwheat Flavonoid Extracts (BWFEs) from Germinated Sprouts", Journal of Medicinal Plants Research, vol. 6, no. 1, pp. 24-29, 2011. DOI: https://doi.org/10.5897/JMPR11.535
  9. CB Cui, EY Lee, SS Ham, DS Lee, "Antimutagenic and Cytotoxic Effects of an Ethanol Extract of Buckwheat Sprout", J. Korean Soc. Appl. Biol. Chem, vol. 51, no. 3, pp. 212-218, 2008.
  10. G Zhang, Z Xu, Y Gao, X Huang, Y Zou, T Yang, "Effects of Germination on the Nutritional Properties, Phenolic Profiles, and Antioxidant Activities of Buckwheat", Journal of Food Science, vol. 80, no. 5, pp. 1111-1119, 2015. DOI: https://doi.org/10.1111/1750-3841.12830
  11. K Christa, M Soral-Smietana, "Buckwheat Grains and Buckwheat Products-Nutritional and Prophylactic Value of their Components - a Review", Czech J. Food Sci, vol. 26, no. 3, pp. 153-162, 2008.
  12. SC Ren, JT Sun, "Changes in Phenolic Content, Phenylalanine Ammonia-Lyase (PAL) Activity, and Antioxidant Capacity of Two Buckwheat Sprouts in Relation to Germination", Journal of Functional Foods, vol. 7, pp. 298-304, 2014. DOI: https://doi.org/10.1016/j.jff.2014.01.031
  13. M Koyama, C Nakamura, K Nakamura, "Changes in Phenols Contents from Buckwheat Sprouts during Growth Stage", J Food Sci Technol, vol. 50, no. 1, pp. 86-93, 2013. DOI: https://doi.org/10.1007/s13197-011-0316-1
  14. H Zhu, H Wang, Y Zhu, J Zou, FJ Zhao, CF Huang, "Genome-wide Transcriptomic and Phylogenetic Analyses Reveal Distinct Aluminum-tolerance Mechanisms in the Aluminum-accumulating Species Buckwheat (Fagopyrum tataricum)", BMC Plant Biol, vol. 15, no. 16, 2015. DOI: https://doi.org/10.1186/s12870-014-0395-z
  15. JA Gim, HS Kim, "Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome", Journal of Life Science, vol. 24, no. 11, pp. 1258-1267, 2014. DOI: https://doi.org/10.5352/JLS.2014.24.11.1258
  16. JM Xu, W Fan, JF Jin, HQ Lou, WW Chen, JL Yang, SJ Zheng, "Transcriptome Analysis of Al-Induced Genes in Buckwheat (Fagopyrum esculentum Moench) Root Apex: New Insight into Al Toxicity and Resistance Mechanisms in an Al Accumulating Species", Frontiers in Plant Science, vol. 8, pp. 1141, 2017. DOI: https://doi.org/10.3389/fpls.2017.01141
  17. MD Logacheva, AS Kasianov, DV Vinogradov, TH Samigullin, MS Gelfand, VJ Makeev, AA Penin, "De Novo Sequencing and Characterization of Floral Transcriptome in Two Species of Buckwheat (Fagopyrum)", BMC Genomics, vol. 12, no. 30, 2011. DOI: https://doi.org/10.1186/1471-2164-12-30
  18. I Bekesiova, JP Nap, L Mlynarova, "Isolation of High Quality DNA and RNA from Leaves of the Carnivorous Plant Drosera rotundifolia", Plant Molecular Biology Reporter, vol. 17, no. 3, pp. 269-277, 1999. DOI: https://doi.org/10.1023/A:1007627509824
  19. MP Cox, DA Peterson, PJ Biggs, "SolexaQA: At-a-glance Quality Assessment of Illumina Second-generation Sequencing Data", BMC Bioinformatics, vol. 11, pp. 485, 2010. DOI: https://doi.org/10.1186/1471-2105-11-485
  20. DR Zerbino, E Birney, "Velvet: Algorithms for De Novo Short Read Assembly using De Bruijin Graphs", Genome Research, vol. 18, no. 5, pp. 821-829, 2008. DOI: https://doi.org/10.1101/gr.074492.107
  21. MH Schulz, DR Zerbino, M Vingron, E Birney, "Oases: Robust De Novo RNA-seq Assembly across the Dynamic Range of Expression Levels", Bioinformatics, vol. 28, no. 8, pp. 1086-1092, 2012. DOI: https://doi.org/10.1093/bioinformatics/bts094
  22. M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock, "Gene Ontology: Tool for The Unification of Biology, Nat Genet, vol. 25, no. 1, pp. 25-29, 2000. DOI: https://doi.org/10.1038/75556
  23. Q Wu, X Bai, W Zhao, D Xiang, Y Wan, J Yan, L Zou, G Zhao, "De Novo Assembly and Analysis of Tartary buckwheat (Fagopyrum tataricum Garetn.) Transcriptome Discloses Key Regulators Involved in Salt-Stress Response", Genes(Basel), vol. 8, no. 10, pp. 255, 2017. DOI: https://doi.org/10.3390/genes8100255
  24. SL Kim, SK Kim, CH Park, "Introduction and Nutritional Evaluation of Buckwheat Sprouts as a New Vegetable", Food Research International, vol. 37, no. 4, pp. 319-327, 2004. DOI: https://doi.org/10.1016/j.foodres.2003.12.008
  25. M Ogawa, A Hanada, Y Yamauchi, A Kuwahara, Y, Kamiya, S Yamaguchi, "Gibberellin biosynthesis and response during Arabidopsis seed germination", The Plant Cell, vol. 15, no. 7, pp. 1591-1604, 2003. DOI: https://doi.org/10.1105/tpc.011650
  26. Y Bao, WM Song, J Pan, CM Jiang, R Srivastava, B Li, LY Zhu, HY Su, XS Gao, H Liu, X Yu, L Yang, XH Cheng, HX Zhang, "Overexpression of the NDR1/HIN1-like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis", PLOS ONE, vol. 5, no. 11, 2016. DOI: https://doi.org/10.1371/journal.pone.0148572
  27. J Griffiths, K Murase, I Rieu, R Zentella, ZL Zhang, SJ Powers, F Gong, AL Phillips, P Hedden, TP Sun, SG Thomas, "Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis", The Plant Cell, vol. 18, no. 12, pp. 3399-3414, 2006. DOI: https://doi.org/10.1105/tpc.106.047415
  28. X Qin, JH Liu, WS Zhao, XJ Chen, ZJ Guo, YL Peng, "Gibberellin 20-Oxidase Gene OsGA20ox3 Regulates Plant Stature and Disease Development in Rice", Mol Plant Microbe Interact, vol. 26, no. 2, pp. 227-239, 2013. DOI: https://doi.org/10.1094/MPMI-05-12-0138-R
  29. I Boycheva, V Vassileva, M Revalska, G Zehirov, A Iantcheva, "Different Functions of the Histone Acetyltransferase HAC1 Gene Traced in the Model Species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana", Protoplasma, vol. 254, no. 2, pp. 697-711, 2017. DOI: https://doi.org/10.1007/s00709-016-0983-x