DOI QR코드

DOI QR Code

Additive Noise Reduction Algorithm for Mass Spectrum Analyzer

질량 스펙트럼 분석기를 위한 부가잡음제거 알고리즘

  • Choi, Hun (Department of Electronic Engineering, Dongeui University) ;
  • Lee, Imgeun (Department of Game Animation Engineering, Dongeui University)
  • Received : 2017.11.13
  • Accepted : 2017.12.04
  • Published : 2018.01.31

Abstract

An additive noise reduction algorithm for a mass spectrum analyzer is proposed. From the measured ion signal, we first used an estimated threshold from the mode of the measured signal to eliminate background noises with the white Gaussian characteristics. Also, a signal block corresponding to each mass index is constructed to perform a second order curve fitting and a linear approximation to signal block. In this process, the effective signal block composed of only the ion signal can be reconstructed by removing the impulsive noises and the sample signals which are insufficient to be viewed as normal ion signals. By performing curve fitting on the effective signal block, the noise-free mass spectrum can be obtained. To evaluate the performance of the proposed method, a simulation was performed using the signals acquired from the development equipment. Simulation results show the validity of the threshold setting from the mode and the superiority of the proposed curve fitting and linear approximation based noise canceling algorithm.

질량 스펙트럼 분석 시스템을 위한 부가 잡음제거 알고리즘을 제안하였다. 측정된 이온 신호로부터 먼저 백색 가우시안 특성을 갖는 바닥 잡음의 제거를 위해 측정된 신호의 최빈값으로부터 추정된 임계값을 사용하였다. 또한 각각의 질량 지수에 해당하는 신호 블록을 구성하여 이 신호 블록에 대한 2차 커브 피팅 및 선형 근사를 수행한다. 이 과정에서 임펄스성 잡음과 정상적인 이온 신호로 보기에 불충분한 샘플 신호들을 제거함으로써 이온 신호만으로 구성된 유효 신호 블록을 재 구성할 수 있다. 이 유효 신호 블록에 대한 커브 피팅 곡선으로부터 잡음이 제거된 질량 스펙트럼을 얻을 수 있다. 제안한 방법의 성능평가를 위해 개발장비로부터 취득된 신호를 이용한 시뮬레이션을 수행하였다. 시뮬레이션 결과를 통해 최빈값으로부터 추정된 임계값 설정의 타당함과 제안한 커브 피팅 및 선형 근사기반 잡음제거 알고리즘의 우수성을 보였다.

Keywords

References

  1. S. Sujithra, P. Sreelatha, and S.E. Lawrence,"Development of control algorithm for quadrupole mass spectrometer using LabVIEW," in Proceedings of the 2014 International Conference on Electronics and Communication Systems, pp. 1-5, 2014.
  2. B.L. Smith, F.P.M. Jjunju, S. Taylor, I.S. Young, S. Maher, "Development of a portable, low cost, plasma ionization source coupled to a mass spectrometer for surface analysis," in Proceedings of the Conference of 2106 IEEE Sensors, pp. 1-3, 2016.
  3. S.Y. Choi, "Status of Accelerator for Advanced Analysis," Journal of the Korea Institute of Applied Superconductivity and Cryogenics Semiannual, vol.19, no.1, pp.29-33, Jan. 2017.
  4. P. H. Dawson (ed.), Quadrupole Mass Spectrometry and Its Applications, New York, Elsevier Scientific Publishing, 2003.
  5. J. H. Batey, "The physics and technology of quadrupole mass spectrometers," Journal of Vacuum, vol.101, pp.410-415, Mar. 2014. https://doi.org/10.1016/j.vacuum.2013.05.005
  6. C.J. Park, "Operating Principle of Residual Gas Analyzer," Journal of the Korean Vacuum Society, vol.17, no.4, pp. 262-269, July 2008. https://doi.org/10.5757/JKVS.2008.17.4.262
  7. A. V. Oppenheim and R. W, Schafer, Discrete-Time Signal Processing, 2nd ed. New Jersey, Prentice-Hall, 1999.
  8. G. Chandrika, "Study on Software Reliability and Reliability Testing," Asia-pacific Journal of Convergent Research Interchange, HSST, ISSN : 2508-9080, vol.1, no.1, pp. 7-20, 2015.
  9. C.D. Kim, C,G. kim, S.H. Park, "Development of Portable Dissolved Gas Analyzer Using photoacoustic spectroscopy," Journal of the Korea Institute of Information and Communication Engineering, vol.17, no. 10, pp. 2431-2438, Oct. 2013. https://doi.org/10.6109/jkiice.2013.17.10.2431