DOI QR코드

DOI QR Code

Distributed File Placement and Coverage Expansion Techniques for Network Throughput Enhancement in Small-cell Network

소형셀 네트워크 전송용량 향상을 위한 분산 파일저장 및 커버리지 확장 기법

  • Hong, Jun-Pyo (Department of Information and Communications Engineering, Pukyong National University)
  • Received : 2017.11.28
  • Accepted : 2017.12.08
  • Published : 2018.01.31

Abstract

This paper proposes distributed file placement and coverage expansion techniques for mitigating the traffic bottleneck in backhaul for small-cell networks. In order to minimize the backhaul load with limited memory space, the proposed scheme controls the coverage and file placement of base station according to file popularity distribution and memory space of base stations. In other words, since the cache hit ratio is low when there is small memory capacity or widespread file popularity distribution, the base stations expand its coverage and cache different set of files for the user located in overlapped area to exploit multiple cached file sets of base stations. Our simulation results show that the proposed scheme outperforms the conventional cache strategy in terms of network throughput when there is small memory capacity or widespread file popularity distribution.

본 논문은 제한된 백홀 용량으로 발생하는 소형셀 네트워크에서의 트래픽 병목현상을 완화하기 위한 분산 파일저장 기술과 커버리지 확장 기술을 제안하였다. 제안 기법은 한정된 메모리 용량으로 백홀 망의 부하를 최소화하기 위해 파일의 인기도와 기지국의 메모리 용량에 따라 기지국의 커버리지와 파일 저장방법을 결정한다. 즉, 메모리 공간이 작거나 이용자들로부터 요청되는 파일이 다양할 경우 개별 기지국에 저장된 파일로 이용자를 서비스할 수 있는 확률이 낮아지므로 커버리지를 확장하고 기지국 사이 저장 파일의 중복을 줄여 커버리지 중첩지역에 있는 이용자가 다수의 기지국에 저장된 다양한 파일로 서비스 받을 수 있게 한다. 시뮬레이션을 통한 기존 배타적인 커버리지를 갖는 소형셀 네트워크에서의 파일저장 기법과의 전송용량 비교를 통해 제안 기법이 메모리 공간이 작거나 이용자들로 부터 요청되는 파일이 다양한 상황에서 높은 성능 이득을 가짐을 보였다.

Keywords

References

  1. Global mobile Supplier Association. Small cell network white paper [Internet]. Available: http://www.huawei.com/minisite/hwmbbf16/insights/small_cell_solution.pdf.
  2. S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, "Millimeter wave beamforming for wireless backhaul and access in small cell networks," IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391-4403, Oct. 2013. https://doi.org/10.1109/TCOMM.2013.090513.120848
  3. Z. Gao, L. Dai, Z. Wang, M. A. Imran, and M. Z. Shakir, "Mmwave massive-MIMO-based wireless backhaul for the 5G utra dense network," IEEE Wireless Communications, vol. 22, no. 5, pp. 13-21, Oct. 2015. https://doi.org/10.1109/MWC.2015.7306533
  4. S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, "Tractable model for rate in self-backhauled millimeter wave cellular networks," IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2196-2211, Oct. 2015. https://doi.org/10.1109/JSAC.2015.2435357
  5. N. Golrezaei, A. F. Molish, A. G. Dimakis, and G. Caire, "Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution," IEEE Communications Magazine, vol. 51, no. 4, pp. 142-149, Apr. 2013. https://doi.org/10.1109/MCOM.2013.6495773
  6. E. Bastug, M. Bennis, and M. Debbah, "Living on the edge: the role of proactive cahcing in 5G wireless networks," IEEE Communications Magazine, vol. 52, no. 8, pp. 82-89, Aug. 2014. https://doi.org/10.1109/MCOM.2014.6871674
  7. N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molish, and G. Caire, "FemtoCaching: wireless video content delivery through distributed caching helpers," in Proceeding of IEEE International Conference on Computer Communications 2012, Orlando: FL, pp. 25-30, 2012.
  8. K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molish, and G. Caire, "FemtoCaching: wireless content delivery through distributed caching helpers," IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402-8413, Dec. 2013. https://doi.org/10.1109/TIT.2013.2281606
  9. J. Song, H. Song, and W. Choi, "Optimal content placement for wireless femto-caching network," IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp. 4433-4444, Jul. 2017. https://doi.org/10.1109/TWC.2017.2698447
  10. N. Golrezaei, A. G. Dimakis, A. F. Molish, "Scaling behavior for device-todevice communications with distributed caching," IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 4286-4298, Jul. 2014. https://doi.org/10.1109/TIT.2014.2319312
  11. M. Gregori, J. Gomez-Vilardebo, J. Matamoros, and D. Gunduz, "Wireless content caching for small cell and D2D networks," IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1222-1234, May 2016. https://doi.org/10.1109/JSAC.2016.2545413
  12. J. -P. Hong and W. Choi, "User prefix caching for average playback delay reduction in wireless video streaming," IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 377-388, Jan. 2016. https://doi.org/10.1109/TWC.2015.2473171
  13. G. -U. Kim and J. -P. Hong, "Wireless caching techniques based on content popularity for network resource efficiency and quality of experience improvement," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 8, pp. 1465-1473, Aug. 2017. https://doi.org/10.6109/JKIICE.2017.21.8.1465
  14. V. Srinidhi, "Classification of user behavior in mobile Internet," Asia-pacific Journal of Convergent Research Interchange, vol. 2, no. 2, pp. 9-18, Jun. 2016.

Cited by

  1. 입력 포화가 존재하는 다중 에이전트 시스템을 위한 PI기반의 봉쇄제어 vol.25, pp.1, 2018, https://doi.org/10.6109/jkiice.2021.25.1.102