DOI QR코드

DOI QR Code

Fabrication and Characterization of CuO Thin Film/ZnO Nanorods Heterojunction Structure for Efficient Detection of NO Gas

일산화질소 가스 검출을 위한 CuO 박막/ZnO 나노막대 이종접합 구조의 제작 및 특성 평가

  • Yoo, Hwansu (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Hyojin (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Dojin (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University)
  • 유환수 (충남대학교 차세대기판학과) ;
  • 김효진 (충남대학교 차세대기판학과) ;
  • 김도진 (충남대학교 차세대기판학과)
  • Received : 2017.10.23
  • Accepted : 2017.11.16
  • Published : 2018.01.27

Abstract

We report on the efficient detection of NO gas by an all-oxide semiconductor p-n heterojunction diode structure comprised of n-type zinc oxide (ZnO) nanorods embedded in p-type copper oxide (CuO) thin film. The CuO thin film/ZnO nanorod heterostructure was fabricated by directly sputtering CuO thin film onto a vertically aligned ZnO nanorod array synthesized via a hydrothemal method. The transport behavior and NO gas sensing properties of the fabricated CuO thin film/ZnO nanorod heterostructure were charcterized and revealed that the oxide semiconductor heterojunction exhibited a definite rectifying diode-like behavior at various temperatures ranging from room temperature to $250^{\circ}C$. The NO gas sensing experiment indicated that the CuO thin film/ZnO nanorod heterostructure had a good sensing performance for the efficient detection of NO gas in the range of 2-14 ppm under the conditions of an applied bias of 2 V and a comparatively low operating temperature of $150^{\circ}C$. The NO gas sensing process in the CuO/ZnO p-n heterostructure is discussed in terms of the electronic band structure.

Keywords

References

  1. G. F. Fine, L. M. Cavanagh, A. Afonja and R. Bibions, Sensors, 10, 5469 (2010). https://doi.org/10.3390/s100605469
  2. N. Yamazoe and N. Miura, Sens. Actuators, B, 20, 95(1994). https://doi.org/10.1016/0925-4005(93)01183-5
  3. S. Basu and A. Dutta, Sens. Actuators, B, 22, 83 (1994). https://doi.org/10.1016/0925-4005(94)87004-7
  4. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15, 353 (2003). https://doi.org/10.1002/adma.200390087
  5. D. H. Zhang, C. Li, X. L. Liu, T. Tang and C. W. Zhou, Appl. Phys. Lett., 83, 1845 (2003). https://doi.org/10.1063/1.1604194
  6. T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005). https://doi.org/10.1007/s00339-004-3075-2
  7. N. L. Hung, E. Ahn, H. Jung, H. Kim and D. Kim, J. Korean Phys. Soc., 57, 1784 (2010). https://doi.org/10.3938/jkps.57.1784
  8. S. Park, H. Kim and D. Kim, J. Korean Phys. Soc., 66, 31 (2015).
  9. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology, 17, 4995(2006). https://doi.org/10.1088/0957-4484/17/19/037
  10. J. Y. Park, S.-W. Choi and S. S. Kim, Nanoscale Res. Lett., 5, 353 (2010). https://doi.org/10.1007/s11671-009-9487-3
  11. M.-S. Lee, E. Oh and S.-H. Jeong, Bull. Korean Chem. Soc., 32, 3735 (2011). https://doi.org/10.5012/bkcs.2011.32.10.3735
  12. R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, Nano-Micro Lett., 7, 97 (2015). https://doi.org/10.1007/s40820-014-0023-3
  13. S.-D. Baek, P. Biswas, J.-W. Kim, Y. C. Kim, T. I. Lee and J.-M. Myoung, ACS Appl. Mater. Interfaces, 8, 13018 (2016). https://doi.org/10.1021/acsami.6b03258
  14. P. Biswas, S.-D. Baek, S. H. Lee, J.-H. Park, S. J. Lee, T. I. Lee and J.-M. Myoung, Sci. Rep., 5, 17961 (2015).
  15. C. M. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh and C. I. Hsu, Chem. Phys. Lett., 476, 69 (2009). https://doi.org/10.1016/j.cplett.2009.06.007
  16. S. Maridha and D. Basak, Semicond. Sci. Technol., 21, 928 (2006). https://doi.org/10.1088/0268-1242/21/7/017
  17. J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Barad and A. J. Nozik, Adv. Mater., 22, 3704 (2010). https://doi.org/10.1002/adma.201001148
  18. A. El-Trass, H. El-Shamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci., 258, 2997 (2012). https://doi.org/10.1016/j.apsusc.2011.11.025
  19. H. Kidowaki, T. Oku and T. Akiyama, J. Phys.: Conf. Ser., 352, 012022 (2012).
  20. L. T. Hoa and S. H. Hur, Phys. Stat. Sol. A, 210, 1213, (2013). https://doi.org/10.1002/pssa.201228664
  21. H. Hwang and H. Kim, Korean J. Mater. Res., 26, 84 (2016). https://doi.org/10.3740/MRSK.2016.26.2.84
  22. L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd., 511, 195 (2012). https://doi.org/10.1016/j.jallcom.2011.09.028
  23. A. Chowdhury, B. Biswas, R. N. Bera and B. Malik, RSC Advances, 2, 10968 (2012).
  24. S. Choopun, N. Hongsith and E. Wongrat, Nanowires - Recent Advances, p. 8, ed. by X. Peng, InTech (2012).
  25. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006). https://doi.org/10.1016/j.snb.2005.07.058
  26. H. Hwang, H. Kim and D. Kim, Korean J. Mater. Res., 25, 171 (2015). https://doi.org/10.3740/MRSK.2015.25.4.171
  27. H. Yoo, MS Thesis (in Korean), p. 76, Chungnam National University, Daejeon (2016).