DOI QR코드

DOI QR Code

Pore Structure and Electrochemical Properties of Carbon Aerogels as an EDLC-Electrode with Different Preparation Conditions

EDLC 전극용 카본에어로젤의 합성조건에 따른 기공구조 및 전기화학적 특성

  • Seo, Hye Inn (Department of Chemical Engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
  • Received : 2017.10.23
  • Accepted : 2017.11.27
  • Published : 2018.01.27

Abstract

Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from $NaHCO_3$ and $KHCO_3$ with $H^+$ ions had higher specific surface areas but exhibited lower electrochemical properties than those from $K_2CO_3$ and $Na_2CO_3$, which had more uniform pore size distributions. The electrochemical properties of $Na_2CO_3$ were superior to those of $K_2CO_3$ probably because the polarizing power of $Na^+$ ions was higher than $K^+$ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.

Keywords

References

  1. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009). https://doi.org/10.1039/b813846j
  2. D. Qu, H. Shi, J. Power Sources, 74, 99 (1998). https://doi.org/10.1016/S0378-7753(98)00038-X
  3. Y. Zhai, Y. Dou, D. Zho, P. F. Fulvio and R. T. Mayes, Adv. Mater., 23, 4828 (2011). https://doi.org/10.1002/adma.201100984
  4. M. Noked, A. Soffer and D. Aurbach, J. Solid State Electr., 15, 1563 (2011).
  5. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  6. E. Frackowiak, Q. Abbas and F. Beguin, J. Energy Chem., 22, 227 (2013).
  7. H. M. Lee, H. G. Kim, K. H. An and B. J. Kim, J. Nanosci. Nanotech., 15, 8797 (2015). https://doi.org/10.1166/jnn.2015.11524
  8. T. E. Rufford, D. H. Jurcakova, E. Fiset, Z. Zhu and G. Q. Lu, Electrochem. Commun., 11, 974 (2009). https://doi.org/10.1016/j.elecom.2009.02.038
  9. H. M. Lee, H. G. Kim, K. H. An and B. J. Kim, Carbon Lett., 15, 71 (2014). https://doi.org/10.5714/CL.2014.15.1.071
  10. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu and D. Zou Adv. Mater., 24, 5713 (2012).
  11. E. J. Lee, Y. J. Lee, J. K. Kim, M. Z. Lee, J. H. Yi, J. R. Yoon, J. C. Song and I. K. Song, Mater. Res. Bull., 70, 209 (2015). https://doi.org/10.1016/j.materresbull.2015.04.044
  12. H. Tamon, H. Ishizaka, T. Araki and M. Okazaki, Carbon, 36, 1257 (1998). https://doi.org/10.1016/S0008-6223(97)00202-9
  13. N. Job, R. Pirard, J. Marien and J. P. Pirard, Carbon, 42, 619 (2004). https://doi.org/10.1016/j.carbon.2003.12.072
  14. Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li and H. M. Cheng, Nano. Energy, 1, 107 (2012).
  15. S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj and C. N. R. Rao, J. Chem. Sci., 120, 9(2008).
  16. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, Adv. Funct. Mater., 21, 2366 (2011). https://doi.org/10.1002/adfm.201100058
  17. J. Chmiola, G. Yushin, R. Dash and Y. Gogotsi, J. Power Sources, 158, 765 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.008
  18. J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose and T. F. Baumann, Energy Environ. Sci., 4, 656 (2011). https://doi.org/10.1039/c0ee00627k
  19. L. Zuo, Y. Zhang, L. Zhang, Y. E. Miao, W. Fan and T. Liu, Materials, 5, 6806 (2015).
  20. A. C. Pierre and G. M. Pajonk, Chem. Rev., 102, 4243 (2002). https://doi.org/10.1021/cr0101306
  21. R. W. Pekala, J. Mater. Sci., 24, 3221 (1989)
  22. N. Liu, J. Shen and D. Liu, Microporous Microporous Mater., 167, 23 (2013).
  23. S. A. Al-Muhtaseb and J. A. Ritter, Adv. Mater., 15, 101 (2003). https://doi.org/10.1002/adma.200390020
  24. A. M. Elkhatat and S. A. Al-Muhtaseb, Adv. Mater., 23, 2887 (2011). https://doi.org/10.1002/adma.201100283
  25. S. J. Taylor, M. D. Haw, J. Sefcik and A. J. Fletcher, Lamgmuir, 30, 10231 (2014). https://doi.org/10.1021/la502394u
  26. T. Yamanoto, T. Yoshida, T. Suzuki, S. R. Mukai and H. Tamon, J. Colloid Interface Sci., 245, 391 (2002). https://doi.org/10.1006/jcis.2001.8006
  27. I. C. Yang, S. G. Kim, S. H. Kwon, M. S. Kim and J. C. Jung, Electrochim. Acta, 223, 21 (2017). https://doi.org/10.1016/j.electacta.2016.11.177
  28. T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino and S. R. Mukai, Carbon, 76, 240 (2014). https://doi.org/10.1016/j.carbon.2014.04.074
  29. R. Brandt, R. Petricevic, H. Probstle and J. Fricke, J. Porous Mater. 10, 171 (2003).
  30. Y. Hamano, S. Tsujimura, O. Shirai and K. Kano, Mater. Lett., 128, 191 (2014). https://doi.org/10.1016/j.matlet.2014.04.125
  31. C. Lin and J. A. Ritter, Carbon, 35, 1271 (1997). https://doi.org/10.1016/S0008-6223(97)00069-9
  32. S. W, Hwang and S. H. Hyun, J. Non-Cryst. Solids, 347, 238 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.075
  33. T. Horikawa, J. Hayashi and K. Muroyama, Carbon, 42, 1625 (2004). https://doi.org/10.1016/j.carbon.2004.02.016
  34. W. Wang, P. Liu, M. Zhang, J. Hu and F. Xing, J. Compos. Mater., 2, 104 (2012).
  35. S. Mezzacilla, C. Zancella, P. R. Aravind, C. D. Volpe and G. D. Soraru, J. Mater. Sci., 47, 7175 (2012).
  36. J. Feng, J. Feng and C. Zhang, J. Sol-Gel. Sci. Technol., 59, 371 (2011).
  37. N. Job, A. Thery, R. Pirard, J. Mariea, L. Kocon, J. Rouzaudm R. Beguin and J. Pirard, Carbon, 43, 2481(2005). https://doi.org/10.1016/j.carbon.2005.04.031
  38. Y. J. Lee, J. C. Jung, J. Y. Yi, S. H. Baeck, J. R. Yoon and I. K. Song, Curr. Appl. Phys., 10, 682 (2010). https://doi.org/10.1016/j.cap.2009.08.017
  39. R. Kotz and M. Carlen, Electrochim. Acta 45, 2483(2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  40. S. H. Kwon, E. J, Lee, B. S. Kim, S. G. Kim, B. J. Lee, M. S. Kim and J. C. Jung, Korean J. Chem. Eng., 14, 603(2014).
  41. J. Chmila, G. Yushin, Y. Gogotsi, C. Portet. P. Simon and P. L. Taberna, Science, 313, 1760 (2006). https://doi.org/10.1126/science.1132195
  42. C. Largeot, C. Portet. J. Chmiola, P. L. Taberna, Y. Gogotsi and P. Simon, J. Am. Chem. Soc., 130, 2790 (2008).
  43. J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Angew. Chem. 120, 3440 (2008). https://doi.org/10.1002/ange.200704894
  44. D. Fairen-Jimenez, F. Carrasco-Marin and C. Moreno-Castilla, Carbon, 44, 2301 (2006). https://doi.org/10.1016/j.carbon.2006.02.021
  45. J. S. Chen, J. P. Diard, R. Durand and, C. Montella, J. Electro. Chem., 406, 1 (1996). https://doi.org/10.1016/0022-0728(95)04433-7
  46. J. H. Jang and S. M. Oh, J. Korean Electrochem. Soc., 13, 223 (2010). https://doi.org/10.5229/JKES.2010.13.4.223
  47. W. Kunz, J. Henle and B. W. Ninham, Curr. Opin. Colloid Interface Sci., 9, 19 (2004). https://doi.org/10.1016/j.cocis.2004.05.005