DOI QR코드

DOI QR Code

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan (Research Center for Eco Multi-Functional Nano Materials, Sun Moon University) ;
  • Nguyen, Hoang Phuc (Research Center for Eco Multi-Functional Nano Materials, Sun Moon University) ;
  • Kim, Tae-Ho (Research Center for Eco Multi-Functional Nano Materials, Sun Moon University) ;
  • Lee, Soo Wohn (Department of Environmental and Bio-Chemical Engineering, Sun Moon University)
  • Received : 2017.08.28
  • Accepted : 2017.12.22
  • Published : 2018.01.27

Abstract

Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

Keywords

References

  1. A. Mittal, J. Mittal and L. Kurup, J. Hazard. Mater., 137, 591 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.047
  2. E. Gutierrez-Segura, M. Solache-Rios and A. Colin-Cruz, J. Hazard. Mater., 170, 1227 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.102
  3. M. S. Secula, I. Crezescu and S. Petrescu, Desalination, 277, 227 (2011). https://doi.org/10.1016/j.desal.2011.04.031
  4. S. Ammar, R. Abdelhedi, C. Flox, C. Arias and E. Brillas, Environ. Chem. Lett., 4, 229 (2006). https://doi.org/10.1007/s10311-006-0053-2
  5. S. M. de Oliveira Brito, H. M. C. Andrade, L. F. Soares and R. P. de Azevedo, J. Hazard. Mater., 174, 84 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.020
  6. I. K. Konstantinou and T. A. Albanis, Appl. Catal. B, 49, 1 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010
  7. C. Flox, S. Ammar, C. Arias, E. Brillas, A. V. Vargas-Zavala and R. Abdelhedi, Appl. Catal. B, 67, 93 (2006). https://doi.org/10.1016/j.apcatb.2006.04.020
  8. P. Jackson and M. I. Attalla, Rapid Commun. Mass Spectrom., 21, 1893 (2007). https://doi.org/10.1002/rcm.3037
  9. A. G. S. Prado, L. B. Bolzon, C. P. Pedroso, A. O. Moura and L. L. Costa, Appl. Catal. B, 82, 219 (2008). https://doi.org/10.1016/j.apcatb.2008.01.024
  10. M. Vautier, C. Guillard and J-M. Herrmann, J. Catal., 201, 46 (2001). https://doi.org/10.1006/jcat.2001.3232
  11. N. Barka, A. Assabbane, A. Nounah and Y. A. Ichou, J. Hazard. Mater., 152, 1054 (2008).
  12. J. D. Torres, E. A. Faria, J. R. SouzaDe and A. G. S. Prado, J. Photochem. Photobiol. A, 182, 202 (2006). https://doi.org/10.1016/j.jphotochem.2006.02.027
  13. C. Wang, J. Li, X. Lv, Y. Zhang and G. Guo, Energy Environ. Sci., 7, 2831, (2014). https://doi.org/10.1039/C4EE01299B
  14. A. J. Howarth, Y. Liu, P. Li, Z. Li , T. C. Wang , J. T. Hupp and O. K. Farha, Nat. Rev. Mater., 1, 1 (2016).
  15. T. Zhang and W. Lin, Chem. Soc. Rev., 43, 5982 (2014).
  16. M. A. Nasalevich, M. van der Veen, F. Kapteijn and J. Gascon., CrystEngComm., 16, 4919 (2014). https://doi.org/10.1039/C4CE00032C
  17. H-P. Jing, C-C. Wang, Y-W. Zhang, P. Wang and R. Li, RSC Adv., 4, 54454 (2014).
  18. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen and F. Verpoort, J. Mater. Chem. A, 5, 952(2017). https://doi.org/10.1039/C6TA07860E
  19. J. K. Zar ba, M. Nyk and M. Samoc, Cryst. Growth Des., 16, 6419 (2016). https://doi.org/10.1021/acs.cgd.6b01090
  20. G. Kaur, R. K. Rai, D. Tyagi, X. Yao, P-Z. Li, X-C. Yang, Y. Zhao, Q. Xu and S. K. Singh, J. Mater. Chem. A, 4, 14932 (2016). https://doi.org/10.1039/C6TA04342A
  21. R. Wu, X. Qian, K. Zhou, J. Wei, J. Lou and P. M. Ajayan, ACS Nano, 8, 6297 (2014). https://doi.org/10.1021/nn501783n
  22. C. Samano-Alonso, J. Hernandez-Obregon, R. Cabrera, J.A.I. Diaz-Gongora and E. Reguera, Colloids Surf. A: Physicochem. Eng. Aspects. 506, 50 (2016). https://doi.org/10.1016/j.colsurfa.2016.06.008
  23. B. Pattengale, S. Yang, J. Ludwig, Z. Huang, X. Zhang and J. Huang, J. Am. Chem. Soc., 138, 8072 (2016). https://doi.org/10.1021/jacs.6b04615
  24. E. L. Bustamante, J. L. Fernandez and J. M. Zamaro, J. Colloid Interface Sci., 424, 37 (2014). https://doi.org/10.1016/j.jcis.2014.03.014
  25. L. L. Costa and A. G. S. Prado, J. Photochem. Photobiol. A, 201, 45 (2009). https://doi.org/10.1016/j.jphotochem.2008.09.014
  26. Y. Qu, X. Zhong, Y. Li, L. Liao, Y. Huang and X. Duan, J. Mater. Chem., 20, 3590 (2010). https://doi.org/10.1039/c0jm00493f
  27. L. S. Reddy Yadav, K. Lingaraju, K. Manjunath, G. K. Raghu, K. H. Sudheer Kumar and G. Nagaraju, Mater. Res. Express, 4, 1 (2017).