DOI QR코드

DOI QR Code

Characteristics of Eggshell Powder as Carriers of Probiotics

생균제의 부형제(운반체)로서의 난각분말의 특성

  • Lee, Woo-Do (Department of Animal Science and Technology, Konkuk University) ;
  • Niu, Kai-Min (Department of Animal Science and Technology, Konkuk University) ;
  • Lim, Jeong-Min (Department of Animal Science and Technology, Konkuk University) ;
  • Yi, Kwon-Jung (Department of Animal Science and Technology, Konkuk University) ;
  • Lee, Bong-Joo (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Kim, Kang-Woong (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Kim, Kyoung-Duck (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Hur, Sang-Woo (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Han, Hyon-Sob (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Kim, Soo-Ki (Department of Animal Science and Technology, Konkuk University)
  • 이우도 (건국대학교 동물자원과학과) ;
  • 우개민 (건국대학교 동물자원과학과) ;
  • 임정민 (건국대학교 동물자원과학과) ;
  • 이권정 (건국대학교 동물자원과학과) ;
  • 이봉주 (국립수산과학원 사료연구센터) ;
  • 김강웅 (국립수산과학원 사료연구센터) ;
  • 김경덕 (국립수산과학원 사료연구센터) ;
  • 허상우 (국립수산과학원 사료연구센터) ;
  • 한현섭 (국립수산과학원 사료연구센터) ;
  • 김수기 (건국대학교 동물자원과학과)
  • Received : 2018.01.08
  • Accepted : 2018.01.16
  • Published : 2018.01.30

Abstract

Eggshell (ES) is a by-product of table eggs with high content of calcium carbonate which can be used as a calcium source in feed. In this study, we have first illuminated the potential application of ES as a novel carrier for probiotics. The carriers used in the study include a SBM (Soybean meal), ESL (Eggshell powder with large particles), ESF (Eggshell powder with fine particles), and the complex carriers (SBM+ESL, SBM+ESF). The structure of carriers absorbed by L. plantarum was confirmed by SEM image. Among these carriers, the complex carrier SBM+ESF showed the highest viability of L. plantarum with pH 7~8 during four weeks storage at room temperature. The SBM+ESF was further tested as a carrier for various probiotic strains at $4^{\circ}C$ or $30^{\circ}C$. All the probiotic strains showed high viability at $4^{\circ}C$ storage. However, a significant reduction of Lactobacillus cells was observed at $30^{\circ}C$ storage. B. lichenifomis maintained high viability whereas B. subtilis, B. amyloliquefaciens, and S. cerevisiae showed the reduction of $2{\log}_{10}$ (CFU/g). These results suggest that if the ESF as a calcium source in feed was mixed with SBM, it can be used as an effective complex carrier for improving the viability of some probiotics including B. licheniformis.

계란 가공 부산물인 난각(ES: Eggshell)은 탄산칼슘 함량이 높아 사료에 첨가하여 칼슘원으로 이용되고 있다. 본 연구에서는 ES를 생균제의 부형제인 운반체로서 활용 가능성을 처음으로 시도하였다. L. plantarum을 대두박(SBM: Soybean meal), 난각조각(ESL: Eggshell powder with large particles), 난각미세분말(ESF: Eggshell powder with fine particles), 그리고 이들의 복합운반체인 SBM+ESL과 SBM+ESF에 생균제를 흡착시켜 그 부착상태를 주사전자현미경으로 확인하였다. 이 중 복합운반체인 SBM+ESF는 상온에서 4주 동안 pH 7~8을 유지하면서 L. plantarum의 가장 높은 생존율을 보였다. 본 연구에 사용한 모든 생균제들은 보존기간 동안 $4^{\circ}C$에서는 높은 생존율을 보였다. $30^{\circ}C$에서는 유산균수는 크게 감소하였으나, B. licheniformis는 높은 생존율을 유지하였고 B. subtilis, B. amyloliquefaciens와 S. cerevisiae는 $2{\log}_{10}$ (CFU/g)정도 감소하였다. 상기 연구결과는 사료의 칼슘원으로 이용되는 난각미세분말(ESF)을 대두박과 혼합하여 사용하면 B. licheniformis를 비롯한 일부 생균제의 생존성을 향상시켜 부형제(운반체)로도 사용할 수 있음을 밝혔다.

Keywords

References

  1. Pirvutoiu, I. and Popescu, A. 2012. Research on the major trends in the romanian eggmarket. Bull. Univ. Agric. Sci. Vet. 69, 229-238.
  2. FAO, FAOSTAT, [WWW Document], URL http://faostat3. fao.org/browse/Q/*/E, 2016.
  3. Russ, W. and Meyer-Pittroff, R. 2004. Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 44, 57-62. https://doi.org/10.1080/10408690490263783
  4. Russ, W. and Schnappinger, M. 2007. Waste related to the food industry: a challengein material loops. In: Oreopoulou, V., Russ, W. (Eds.), Utilization of by-products and treatment of waste in the food industry. pp. 1-13. Springer Science Business Media, New York, USA.
  5. Kim, H., Yum, B., Yoon, S., Song, K., Kim, J., Myeong, D., Chang, B. and Choe, N. 2016. Inactivation of Salmonella on eggshells by chlorine dioxide gas. Kor. J. Food Sci. Anim. Resour. 36, 100-108. https://doi.org/10.5851/kosfa.2016.36.1.100
  6. Quina, M. J., Soares, M. A. and Quinta-Ferreira, R. 2017. Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recy. 123, 176-186. https://doi.org/10.1016/j.resconrec.2016.09.027
  7. Schaafsma, A., Pakan, I., Hofstede, G. J., Muskiet, F. A., Van Der Veer, E. and De Vries, P. J. 2000. Mineral, amino acid, and hormonal composition of chicken eggshell powder and the evaluation of its use in human nutrition. Poult. Sci. 79, 1833-1838. https://doi.org/10.1093/ps/79.12.1833
  8. Oliveira, D. A., Benelli, P. and Amante, E. R. 2013. A literature review on adding value to solid residues: egg shells. J. Clean. Prod. 46, 42-47. https://doi.org/10.1016/j.jclepro.2012.09.045
  9. Tunc, A. E. and Cufadar, Y. 2014. Effect of calcium sources and particle size on performance and eggshell quality in laying hens. Turkish JAF Sci. Tech. 3, 205-209. https://doi.org/10.24925/turjaf.v3i4.205-209.262
  10. Ray, S., Barman, A. K., Roy, P. K. and Singh, B. K. 2017. Chicken eggshell powder as dietary calcium source in chocolate cakes. Pharma Innovation 6, 1-4. https://doi.org/10.7897/2277-4572.06142
  11. Caruso, G. 2015. Use of plant products as candidate fish meal substitutes: an emerging issue in aquaculture productions. Fish Aquac. J. 6, 1-3.
  12. Zhou, Z., Ringo, E., Olsen, R. E. and Song, S. K. 2017. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquacult. Nutr. 00, 1-22.
  13. Plaza-Diaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M. and Gil, A. 2017. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9, 555. https://doi.org/10.3390/nu9060555
  14. Lee, A. R., Niu, K. M., Kang, S. K., Han, S. G., Lee, B. J. and Kim, S. K. 2017. Antioxidant and antibacterial activities of Lactobacillus-fermented Artemisia annua L. as a potential fish feed additive. J. Life Sci. 27, 652-660.
  15. Hai, N. V. 2015. The use of probiotics in aquaculture. J. Appl. Microbiol. 119, 917-935. https://doi.org/10.1111/jam.12886
  16. Anekella, K. and Orsat, V. 2014. Shelf life stability of lactobacilli encapsulated in raspberry powder: Insights into non-dairy probiotics. Int. J. Food Sci. Nutr. 65, 411-418. https://doi.org/10.3109/09637486.2013.869793
  17. Saarela, M., Virkajarvi, I., Nohynek, L., Vaari, A. and Matto, J. 2006. Fibers as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolatecoated breakfast cereals. Int. J. Food Microbiol. 112, 171-178. https://doi.org/10.1016/j.ijfoodmicro.2006.05.019
  18. A.O.A.C. 2010. Official methods of analysis of association of official chemists. 18th Ed., Washington, D.C., USA.
  19. Schaafsma, A., Pakan, I., Hofstede, G. J. H., Muskiet, F. A., Van Der Veer, E. and De Vries, P. J. F. 2000. Mineral, amino acid, and hormonal composition of chicken eggshell powder and the evaluation of its use in human nutrition. Poult Sci. 79, 1833-1838. https://doi.org/10.1093/ps/79.12.1833
  20. Lee, Y. S., Lee, Y. H., Lim, S. H., Park, G. H., Choi, S. Y., Hong, H. J. and Ko, J. A. 2013. Volatile compounds and ultrastructure of petal epidermal cells according to scent intensity in Rosa hybrida. Kor. J. Hortic. Sci. Technol. 31, 590-597.
  21. Andriani, Y., Safitri, R., Rochima, E. and Fakhrudin, S. D. 2017. Characterization of Bacillus subtilis and B. licheniformis potentials as probiotic bacteria in Vanamei shrimp feed (Litopenaeus vannamei Boone, 1931). Nus. Biosci. 9, 188-193.
  22. Mitra, A., Mukhopadhyay, P. K. and Homechaudhuri, S. 2017. Probiotic effect of Bacillus licheniformis fb11 on the digestive efficiency and growth performance in juvenile Chitala chitala (Hamilton, 1822). Proc. Zool. Soc. 2, 1-12.
  23. Deng, W., Dong, X. F., Tong, J. M. and Zhang, Q. 2012. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 91, 575-582. https://doi.org/10.3382/ps.2010-01293
  24. Yang, H. L., Xia, H. Q., Ye, Y. D., Zou, W. C. and Sun, Y. Z. 2014. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Dis. Aquat. Org. 111, 119-127. https://doi.org/10.3354/dao02772
  25. Sreenivasulu, P., Suman Joshi, D. S. D., Narendra, K., Venkata Rao, G. and Krishna Satya, A. 2016. Bacillus pumilus as a potential probiotic for shrimp culture. Int. J. Fish Aquat. Stud. 4, 107-110.
  26. Zokaeifar, H., Balcazar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A. and Nejat, N. 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 33, 683-689. https://doi.org/10.1016/j.fsi.2012.05.027
  27. Zuenko, V. A., Laktionov, K. S., Pravdin, I. V., Kravtsova, L. Z. and Ushakova, N. A. 2017. Effect of Bacillus subtilis in feed probiotic on the digestion of fish cultured in cages. J. Ichthyol. 57, 152-157. https://doi.org/10.1134/S0032945217010143
  28. Li, W. F., Rajput, I. R., Xu, X., Li, Y. L., Lei, J., Huang, Q. and Wang, M. Q. 2011. Effects of probiotic (Bacillus subtilis) on laying performance, blood biochemical properties and intestinal microflora of Shaoxing duck. Int. J. Poult. Sci. 10, 583-589. https://doi.org/10.3923/ijps.2011.583.589
  29. Lee, A. R., Niu, K. M., Kang, S. K., Han, S. G., Lee, B. J. and Kim, S. K. 2017. Antioxidant and antibacterial activities of Lactobacillus-fermented Artemisia annua L. as a potential fish feed additive. J. Life Sci. 27, 652-660.
  30. Hamdan, A. M., El Sayed, A. F. M. and Mahmoud, M. M. 2016. Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J. Appl. Microbiol. 120, 1061-1073. https://doi.org/10.1111/jam.13081
  31. Shen, X., Yi, D., Ni, X., Zeng, D., Jing, B., Lei, M. and Xin, J. 2014. Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers. Can. J. Microbiol. 60, 193-202. https://doi.org/10.1139/cjm-2013-0680
  32. Wagner, M., Abdel-Mageed, W. M., Ebel, R., Bull, A. T., Goodfellow, M., Fiedler, H. P. and Jaspars, M. 2014. Dermacozines h-j isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. J. Nat. Prod. 77, 416-420. https://doi.org/10.1021/np400952d
  33. Elsayed, S. and Zhang, K. 2005. Bacteremia caused by Janibacter melonis. J. Clin. Microbiol. 43, 3537-3539. https://doi.org/10.1128/JCM.43.7.3537-3539.2005
  34. Cameron, D. R., Jiang, J. H., Hassan, K. A., Elbourne, L. D., Tuck, K. L., Paulsen, I. T. and Peleg, A. Y. 2015. Insights on virulence from the complete genome of Staphylococcus capitis. Front. Microbiol. 6, 981-992.
  35. Chaemsanit, S., Akbar, A. and Anal, A. K. 2015. Isolation of total aerobic and pathogenic bacteria from table eggs and its contents. Food Appl. Biosci. J. 3, 1-9.
  36. Mukherjee, R., Chakraborty, R. and Dutta, A. 2016. Role of fermentation in improving nutritional quality of soybean meal-a review. Asian-Australas J. Anim. Sci. 29, 1523.
  37. Hincke, M. T., Nys, Y., Gautron, J., Mann, K., Rodriguez- Navarro, A. B. and McKee, M. D. 2012. The eggshell: structure, composition and mineralization. Front Biosci. 17, 1266- 1280. https://doi.org/10.2741/3985
  38. Quintana, G., Gerbino, E. and Gomez-Zavaglia, A. 2017. Okara: A nutritionally valuable by-product able to stabilize Lactobacillus plantarum during freeze-drying, spray-drying, and storage. Front. Microbiol. 8, 641-650.
  39. Jagannath, A., Raju, P. S. and Bawa, A. S. 2010. Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria. LWT-Food Sci. Technol. 43, 1197- 1203. https://doi.org/10.1016/j.lwt.2010.03.009
  40. Sadiq, F. A., Li, Y., Liu, T., Flint, S., Zhang, G., Yuan, L. and He, G. 2016. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int. J. Food Microbiol. 238, 193-201. https://doi.org/10.1016/j.ijfoodmicro.2016.09.009
  41. Cho, J. H., Kim, Y. B., and Kim, E. K. 2009. Optimization of culture media for Bacillus species by statistical experimental design methods. Kor. J. Chem. Eng. 26, 754-759. https://doi.org/10.1007/s11814-009-0126-6
  42. Baptista, A. S., Horii, J. and Piedade, S. M. D. S. 2005. Cells of yeasts adhered in corn grains and the storage perspective for use as probiotic. Braz. Arch. Biol. Technol. 48, 251-257. https://doi.org/10.1590/S1516-89132005000200012