과제정보
연구 과제 주관 기관 : 한국연구재단
참고문헌
- T. Hailesilassie. (2016). Rule extraction algorithm for deep neural networks: A review. International Journal of Computer Science and Information Security, 14, 7, p. 376.
- Andrews, R. Diederich, J. & Tickle, A. B. (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based System, 8(6), 373-389. https://doi.org/10.1016/0950-7051(96)81920-4
- Kim H. (2000). Computationally Efficient Heuristics for If-Then Rule Extraction from Feed-Forward Neural Networks. Lecture Notes in Computer Science, vol 1967, Springer, Berlin, Heidelberg.
- Ishikawa, M. (1996). Structural Learning with Forgetting. Neural Networks, vol.9, no.3, 509-521. https://doi.org/10.1016/0893-6080(96)83696-3
- L. M. Fu. (1994). Rule Generation from Neural Networks. Systems, Man and Cybernetics, 24(8), 1114-1124. https://doi.org/10.1109/21.299696
- L. M. Fu. (1991). Rule Learning by Searching on Adapted Nets. AAAI, 590-595.
- L. M. Fu. (1993). Knowledge-based connectionism for revising domain theories. IEEE Transactions on Systems, Man, and Cybernetics 23(1), 173-182. https://doi.org/10.1109/21.214775
- S. Thrun. (1995). Extracting rules from artificial neural networks with distributed representations. Advances in neural information processing systems, 505-512.
- I. A. a. J. G. Taha. (1999). Symbolic interpretation of artificial neural network. IEEE Transactions on knowledge and data engineering, 11(3), 448-463. https://doi.org/10.1109/69.774103
- G. P. C. A. a. F. S. G. Schmitz. (1999). ANN-DT: an algorithm for extraction of decision trees from artificial neural networks. IEEE Transactions on Neural Networks, 10(6), 1392-1401. https://doi.org/10.1109/72.809084
- G. G. a. j. W. S. Towell. (1993) Extracting refined rules from knowledge-based neural networks. Machine learning, 13(1), 71-101. https://doi.org/10.1007/BF00993103
- R. Setiono, W. K. Leow (2000). FERNN: An algorithm for fast extraction. Applied Intelligence, 12(1-2), 15-25. https://doi.org/10.1023/A:1008307919726