DOI QR코드

DOI QR Code

Novel thermoplastic toughening agents in epoxy matrix for vacuum infusion process manufactured composites

  • Bae, Jin-Seok (Department of Textile System Engineering, Kyungpook National University) ;
  • Bae, Jihye (Department of Textile System Engineering, Kyungpook National University) ;
  • Woo, Heeju (Department of Textile System Engineering, Kyungpook National University) ;
  • Lee, Bumjae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University)
  • Received : 2017.07.17
  • Accepted : 2017.08.16
  • Published : 2018.01.31

Abstract

This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.

Keywords

References

  1. Park MS, Lee S, Lee YS. Mechanical properties of epoxy composites reinforced with ammonia-treated graphene oxides. Carbon Lett, 21, 1 (2017). https://doi.org/10.5714/CL.2017.21.001.
  2. Abdullah SI, Ansari MNM. Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J, 11, 151 (2015). https://doi.org/10.1016/j.hbrcj.2014.06.001.
  3. Szolnoki B, Bocz K, Soti PL, Bodzay B, Zimonyi E, Toldy A, Morlin B, Bujnowicz K, Wladyka-Przybylak M, Marosi G. Development of natural fibre reinforced flame retarded epoxy resin composites. Polym Degrad Stab, 119, 68 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.04.028.
  4. Lee J, Bhattacharyya D, Zhang MQ, Yuan YC. Mechanical properties of a self-healing fibre reinforced epoxy composites. Compos Part B Eng, 78, 515 (2015). https://doi.org/10.1016/j.compositesb. 2015.04.014.
  5. Burger N, Laachachi A, Mortazavi B, Ferriol M, Lutz M, Toniazzo V, Ruch D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int J Heat Mass Transfer, 89, 505 (2015). https://doi.org/10.1016/j.ijheatmasstransfer. 2015.05.065.
  6. Shin H, Kim B, Han JG, Lee MY, Park JK, Cho M. Fracture toughness enhancement of thermoplastic/epoxy blends by the plastic yield of toughening agents: A multiscale analysis. Compos Sci Technol, 145, 173 (2017). https://doi.org/10.1016/j.compscitech. 2017.03.028.
  7. Jin H, Yang B, Jin FL, Park SJ. Fracture toughness and surface morphology of polysulfone-modified epoxy resin. J Ind Eng Chem, 25, 9 (2015). https://doi.org/10.1016/j.jiec.2014.10.032.
  8. Sun L, Gibson RF, Gordaninejad F, Suhr J. Energy absorption capability of nanocomposites: a review. Compos Sci Technol, 69, 2392 (2009). https://doi.org/10.1016/j.compscitech.2009.06.020.
  9. Rutnakornpituk M. Thermoplastic toughened epoxy networks and their toughening mechanisms in some systems. Naresuan Univ J, 13, 73 (2005).
  10. Naffakh M, Dumon M, Gerard JF, Modeling the chemorheological behavior of epoxy/liquid aromatic diamine for resin transfer molding applications. J Appl Polym Sci, 102, 4228 (2006). https://doi. org/10.1002/app.24691.
  11. Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascault JP. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules, 36, 118 (2003). https://doi.org/10.1021/ma0211075.
  12. Li S, Hsu BL, Li F, Li CY, Harris FW, Cheng SZD. A study of polyimide thermoplastics used as tougheners in epoxy resins-structure, property and solubility relationships. Thermochim Acta, 340- 341, 221 (1999). https://doi.org/10.1016/S0040-6031(99)00266-X.
  13. Hodgkin JH, Simon GP, Varley RJ. Thermoplastic toughening of epoxy resins: a critical review. Polym Adv Technol, 9, 3 (1998). https://doi.org/10.1002/(SICI)1099-1581(199801)9:1<3::AIDPAT727> 3.0.CO;2-I.
  14. Bucknall CB, Gilbert AH. Toughening tetrafunctional epoxy resins using polyetherimide. Polymer, 30, 213 (1989). https://doi.org/10.1016/0032-3861(89)90107-9.
  15. Bucknall CB, Partridge IK. Phase-separation in cross-linked resins containing polymeric modifiers. Polym Eng Sci, 26, 54 (1986). https://doi.org/10.1002/pen.760260110.
  16. Hourston DJ, Lane JM, Zhang HX. Toughening of epoxy resins with thermoplastics: 3. An investigation into the effects of composition on the properties of epoxy resin blends. Polym Int, 42, 349 (1997). https://doi.org/10.1002/(SICI)1097-0126(199704)42:4<349::AIDPI710> 3.0.CO;2-3.
  17. Pearson RA, Yee AF. Toughening mechanisms in thermoplasticmodified epoxies: 1. Modification using poly(phenylene oxide). Polymer, 34, 3658 (1993). https://doi.org/10.1016/0032-3861(93)90051-B.
  18. Bucknall CB, Partridge IK. Phase separation in epoxy resins containing polyethersulphone. Polymer, 24, 639 (1983). https://doi.org/10.1016/0032-3861(83)90120-9.
  19. Huang P, Zheng S, Huang J, Guo Q, Zhu W. Miscibility and mechanical properties of epoxy resin/polysulfone blends. Polymer, 38, 5565 (1997). https://doi.org/10.1016/S0032-3861(97)00104-3.
  20. Murakami A, Saunders D, Ooishi K, Yoshiki T, Watanabe SO, Takezawa M. Fracture behaviour of thermoplastic modified epoxy resins. J Adhes, 39, 227 (1992). https://doi.org/10.1080/00218469208030464.
  21. Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett, 73, 3842 (199p). https://doi.org/10.1063/1.122911.
  22. Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: a comparative study. Compos Sci Technol, 65, 2300 (2005). https://doi.org/10.1016/j.compscitech.2005.04.021.
  23. Zilg C, Mulhaupt R, Finter J. Morphology and toughness/ stiffness balance of nanocomposites based upon anhydridecured epoxy resins and layered silicates. Macromol Chem Phys, 200, 661 (1999). https://doi.org/10.1002/(sici)1521-3935(19990301)200:3<661::aid-macp661>3.3.co;2-w.
  24. Becker O, Simon GP. Epoxy Nanocomposites Based on Layered Silicates and Other Nanostructured Fillers. In: Mai YW, Yu ZZ, eds. Polymer Nanocomposites, CRC Press, Boca Raton, 29 (2006).
  25. Lan T, Pinnavaia TJ. Clay-reinforced epoxy nanocomposites. Chem Mater, 6, 2216 (1994). https://doi.org/10.1021/cm00048a006.
  26. Johnsen B, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer, 48, 530 (2007). https://doi.org/10.1016/j.polymer. 2006.11.038.
  27. Zhang H, Zhang Z, Friedrich K, Eger C. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater, 54, 1833 (2006). https://doi.org/10.1016/j.actamat.2005.12.009.
  28. Zhang X, Xu W, Xia X, Zhang Z, Yu R. Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide. Mater Lett, 60, 3319 (2006). https://doi.org/10.1016/j.matlet.2006.04.023.
  29. Hussain M, Varley RJ, Mathys Z, Cheng YB, Simon GP. Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. J Appl Polym Sci, 91, 1233 (2004). https://doi.org/10.1002/app.13267.
  30. Van Velthem P, Ballout W, Dumont D, Daoust D, Sclavons M, Cordenier F, Pardoen T, Devaux J, Bailly C. Phenoxy nanocomposite carriers for delivery of nanofillers in epoxy matrix for resin transfer molding (RTM)-manufactured composites. Compos Part A Appl Sci Manuf, 76, 82 (2015). https://dx.doi.org/10.1016/j.compositesa. 2015.05.008.
  31. Park SB. Fracture Toughness of Epoxy Toughened with In-situ Polymerized Novel Polysulfone via Azide-Alkyne Click Reaction, Chungnam National University, Daejeon, MS Thesis (2015).
  32. Barton AFM. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, (1983).