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JACOBSON RADICAL AND NILPOTENT ELEMENTS

Chan Huh∗ †, Jeoung Soo Cheon, and Sun Hye Nam

Abstract. In this article we consider rings whose Jacobson radical con-
tains all the nilpotent elements, and call such a ring an NJ-ring. The

class of NJ-rings contains NI-rings and one-sided quasi-duo rings. We

also prove that the Koethe conjecture holds if and only if the polynomial
ring R[x] is NJ for every NI-ring R.

1. Introduction

Throughout R denotes an associative ring with identity unless otherwise
stated. An element a ∈ R is nilpotent if an = 0 for some integer n ≥ 1, and an
(one-sided) ideal is nil if all the elements are nilpotent. R is reduced if it has no
nonzero nilpotent elements. For a ring R, Nil(R), N(R), and J(R) denote the
set of all the nilpotent elements, the nil radical, and the Jacobson radical of R,
respectively. Note that N(R) ⊆ Nil(R) and N(R) ⊆ J(R). Due to Marks [14],
R is called an NI-ring if Nil(R) ⊆ N(R) (or equilvalently N(R) = Nil(R)).
Thus R is NI if and only if Nil(R) forms an ideal if and only if the factor
ring R/N(R) is reduced. Hong et al [8, corollary 13] proved that R is NI if
and only if every minimal strongly prime ideal of R is completely prime. Since
N(R) ⊆ J(R), it is natural to consider the rings in which J(R) contains Nil(R).
We call R an NJ-ring if Nil(R) ⊆ J(R). Note that an element a ∈ R is left
quasi-regular if 1 − a is left invertible, and a one-sided ideal I is left quasi-
regular if every element of I is left quasi-regular. Since J(R) is the (unique)
largest left quasi-regular left ideal and contains all the left quasi-regular left
ideals [7, Theorem 1.2.3], a ring R is NJ if and only if ra is left quasi-regular
for every a ∈ Nil(R) and r ∈ R.

Remark 1.1. If R is an NJ ring and ab = 1 for a, b ∈ R, then ba = 1. To see
this, first note that ba and 1 − ba are idempotents and (1 − ba)b = b − bab =
b − b(ab) = 0. So [b(1 − ba)]2 = 0, and b(1 − ba) ∈ J(R). Now 1 − ba =
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ab(1− ba) = a(b− (1− ba)) ∈ J(R). This means that the idempotent 1− ba is
left quasi-regular, so must be zero, thus ba = 1.

A ring R is called left(resp. right) quasi-duo [17] if every maximal left(resp.
right) ideal is two sided, thus R is left(resp. right) quasi-duo if and only if every
left(resp. right) primitive factor ring of R is a division ring. Since J(R) is the
intersection of all the (left) primitive ideals, every one-sided quasi-duo rings is
NJ . By Remark 1.1, if R is a one-sided quasi-duo ring and ab = 1 for a, b ∈ R
then ba = 1.

A ring R is called semicommutative if ab = 0 for a, b ∈ R implies that
aRb = 0. If R is semicommutative and a2 = 0 for a ∈ R, then aRa = 0. This
means that (Ra)2 = 0, hence a ∈ Ra ⊆ J(R). So R is NJ .

2. Examples and Properties of NJness

In this section, we investigate properties of NJ-rings and construct several
examples related to the rings.

NJ-rings need not be NI or one-sided quasi-duo, by the following examples.
For a ring R and an integer n ≥ 1, Matn(R) denotes the n×n matrix ring over
R.

Example 2.1. (1) Let F be any field of characteristic 0 and

A = M2(F ), B =

{(
a b
0 a

) ∣∣∣∣ a, b ∈ F} and C =

{(
0 b
0 0

) ∣∣∣∣ b ∈ F}.

Then B is a subring of A and C is a nilpotent ideal of B. Let R = B+A[[x]]x,
then J(R) = C + A[[x]]x. This means that R is NJ . On the other hand,

consider f(x) =

(
0 1
0 0

)
x and g(x) =

(
0 0
1 0

)
x ∈ N(R). Then (f + g)k =(

0 1
1 0

)k
xk 6= 0 for each k ≥ 1. Therefore, R is NJ which is not NI.

(2) If a field F has characteristic 0, then the first Weyl algebra W (F ) over F is
a simple domain but not a division ring, So W (F ) is NJ , but not left quasi-duo.

For an ideal I of R and an idempotent e = e2 ∈ R, J(I) = I ∩ J(R) and
J(eRe) = eRe ∩ J(R). Hence the followings hold.

Proposition 2.2. (1) R is NJ if and only if so is any ideal I of R (as a ring
which may not have identity).
(2) R is NJ if and only if so is eRe for any idempotent 0 6= e in R.

Theorem 2.3. Let {Rλ|λ ∈ Λ} be a class of NJ rings. Then we have the
following :
(1)

∏
λ∈ΛRλ is NJ .
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(2) If {Rλ|λ ∈ Λ} is a directed system, then the direct limit of {Rλ|λ ∈ Λ} is
NJ .
(3) If the index set Λ is finite, then the subdirect product of Rλ is NJ .

Proof. (1) holds by the fact that

J(
∏
λ∈Λ

Rλ) =
∏
λ∈Λ

J(Rλ).

(2) is trivial by the definition.
For (3), it satisfies to show that the subdirect product R of two NJ rings R1 and
R2 is also NJ . By the property of subdirect products, there are two ideals A1

and A2 ofR such that A1∩A2 = 0 andRi ∼= R/Ai for any i = 1, 2. Let r ∈ R and
x ∈ Nil(R). Since R1 and R2 are NJ , we have the following : b1(1−rx) = 1+a1

and b2(1 − rx) = 1 + a2, for some b1, b2 ∈ R, a1 ∈ A, a2 ∈ A2. This implies
that [b1 + b2 − b1(1− rx)b2](1− rx) = 1− a1a2 = 1, since a1a2 ∈ A1 ∩A2 = 0.
Therefore, 1− rx is left invertible, entailing that R is NJ . �

Remark 2.4. For a ring R,
(1) if R is one-sided quasi-duo, then R

J(R) is reduced.

(2) R
J(R) is reduced if and only if R

J(R) is NJ .

(3) if R
J(R) is NJ , then R is NJ .

Proof. (1) If a2 ∈ J(R), then a2 ∈ P for every left primitive ideal P of R. Hence
a ∈ P since R

P is a division ring, and so a ∈
⋂
{P | P a left primitive ideal ofR} =

J(R). Thus R
J(R) is reduced.

(2) Since reduced rings are NJ , it suffices to prove that the sufficient condi-
tion. Suppose R

J(R) is NJ and a2 ∈ J(R); then ā = a + J(R) is nilpotent, so

ā = a+ J(R) ∈ J( R
J(R) ) = (0). Thus R

J(R) is reduced.

(3) If a ∈ R and a2 = 0, then ā2 = 0 in R
J(R) and so ā = 0. This shows that

a ∈ J(R). �

By Remark 2.4 (3) if R
J(R) is NJ then R is NJ , but the converse is not true

in general by the following example.

Example 2.5. Let A = { ba | a, b ∈ Z, 3 - a} be the localization of Z at 3 and

let B = { 3b
a | a, b ∈ Z, 3 - a} the unique maximal ideal of A. Then B = J(A)

and A/B ∼= Z3. Let R = A + Ai + Aj + Ak be a subring of the Hamilton
quaternions and M = B +Bi+Bj +Bk = 3R. Trivially R is NJ .

Now we claim that M = J(R). First we prove that M is left quasi-regular.
Indeed, let 0 6= α ∈ M then α = 3

s (a + bi + cj + dk), where a, b, c, d ∈ Z and

3 - s and so that 1 − α = s−3a
s + −3b

s i + −3c
s j + −3d

s k. Put t = s − 3a, then

u = s/t ∈ A is a central unit in A and u(1− α) = 1 + −3b
t i+ −3c

t j + −3d
t k. Let

β = 1+ 3b
t i+

3c
t j+

3d
t k, then vβu(1−α) = 1 where v = t2

t2+9b2+9c2+9d2 ∈ A. Thus
α is a left quasi-regualr element and M is a left quasi-regular ideal. In order to
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show that M is a maximal ideal of R, let α = 1
s (a+ bi+ cj + dk) ∈ R, α /∈M ,

say 3 - b. Let β = kα − αk. Then β = 2
s (bj − ci) /∈ M and iβ − βi = 4

s bk.

Since 4
s b is a unit in A, we have 1 ∈ RαR. Thus M = 3R is maximal. Hence

M = J(R). Now let a = (i + j + k) + J(R), then a 6= 0 and a2 = 0 in R
J(R) .

Thus R
J(R) is not reduced, hence is not NJ by Remark 2.4.

3. Related Rings to NJness

In this last section, we investigate related rings to NJ-rings and prove some
equivalent conditions to the Koethe conjecture. Note that a subring S of R is
unital if 1R ∈ S. The following results are given by Rowen [16].

Lemma 3.1. ( [16, Proposition 2.5.17] ). Let S be a unital subring of a ring
R.
(1) If every elements of S which is invertible in R is already invertible in S,
then S ∩ J(R) ⊆ J(S).
(2) If S is left Artinian then S ∩ J(R) ⊆ J(S) is nilpotent.

Note that Nil(S) = S ∩Nil(R) ⊆ S ∩ J(R) for any subring S of an NJ ring
R.

Proposition 3.2. For each case of Lemma 3.1, if R is NJ , then so is S.

For any ring R, we have J(R[[x; θ]]) = J(R) + J [[x; θ]]x, where θ is an
endomorphism of R. An endomorphism θ of R is locally finite order if for any
r ∈ R there is an integer n ≥ 1, depending on r, such that θn(r) = r. Thus, we
conclude the following theorem.

Theorem 3.3. Let θ ba an endomorphism of a ring R. Then R is NJ if and
only if R[[x; θ]] is NJ .

Due to Bedi and Ram [3, Theorem 3.1] for any automorphism θ of a ring R,
we have the following:
(1) J(R[x; θ] = I ∩ J(R) + I[x; θ]x;
(2) J(R[x, x−1; θ]) = K[x, x−1; θ] ⊆ J(R)[x, x−1; θ] and J(R[x, x−1; θ]) ∩R[x; θ]
⊆ J(R[x; θ]), where I = {r ∈ R | rx ∈ J(R[x; θ])} and K = J(R[x, x−1; θ])∩R.
In addition, if θ is of locally finite order then I and K are nil ideals, and so
J(R[x; θ]) = I[x; θ].

Lemma 3.4. Let θ be an automorphism of locally finite order and R[x; θ] is
NJ . Then R is NI and J(R[x; θ]) = N(R)[x; θ].

Proof. By [3, Theorem 3.1] J(R[x; θ]) = N [x; θ] for some nil ideal N of R.
Since R[x] is NJ , Nil(R) ⊆ J(R[x; θ]) ⊂ N(R)[x; θ]. Thus Nil(R) = N(R),
and hence R is NI, J(R[x; θ]) = N(R)[x; θ]. Hence R is NI and J(R[x; θ]) =
N(R)[x; θ]. �
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Corollary 3.5. If R[x] is NJ , then R is NI and J(R[x]) = N(R)[x].

Remark 3.6. By Lemma 3.4 and [13, Theorem 4.1], if an automorphism θ of a
ring R is of locally finite order, then R[x; θ] is NJ if and only if it is one-sided
quasi-duo. Therefore, in this case, one-sided quasi-duo condition is left right
symmetric.

Proposition 3.7. For a ring R, the following conditions are equivalent:
(1) R[x] is NJ .
(2) R is NI and J(R[x]) = N(R)[x].

(3) R[x]
J(R[x]) is reduced.

In particular, if R[x] is NJ then so is R[x]
J(R[x]) .

Proof. (1) ⇒ (2) is by Corollary 3.5.

(2) ⇒ (3) Suppose R is NI and J(R[x]) = N(R)[x]. Then R[x]
J(R[x]) = R[x]

N(R)[x]
∼=

( R
N(R) )[x] is a reduced ring, since R

N(R) is reduced.

(3) ⇒ (1) is trivial. �

In 1930, G.Koethe raised the following question which is known as the Koethe
conjecture:

”Does a ring R with nonzero one-sided nil ideal have

a nonzero two-sided ideal?”

In spite of great effort of many reserchers, it remains still open. However
many equivalent properties have been found. Below we list some of them.

Remark 3.8. The followings are equivalent:
(1) The Koethe conjecture holds.
(2) For any ring R if A and B are left nil ideals then A+B is nil.
(3) J(R[x]) = N(R)[x] for any ring R.
(4) N(Mat2(R)) = Mat2(N(R)) for any ring R
(5) N(Matn(R)) = Matn(N(R)) for any ring R and integer n ≥ 1

Proof. See [5, 6, 10, 11, 15]. �

Note that if R is NI, then Nil(R) forms a subring, and if Nil(R) forms a
subring, then the sum of any two nil left ideals is nil. So the Koethe conjecture
holds for this kind of rings.

There is an example of NJ-ring R in which Nil(R) is not a subring, and an
example of non NJ-ring in which Nil(R) is a subring.

Example 3.9. (1) Let R be the ring in Example 2.1(1). Then R is NJ ,
but Nil(R) is not a subring of R as can be seen by the nilpotent elements
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f(x) =

(
0 1
0 0

)
x and g(x) =

(
0 0
1 0

)
x.

(2) Let K be a field and A = K{a, b} be the free algebra generated by the
noncommuting indeterminates a, b over K. Let I be the ideal of A generated by
b2 and setR = A/I. Let c̄ = c+I be the image of c ∈ A inR. ThenNil(R) forms
a subring of R by [2, Corollary 3.3 and Example 4.8]. Note that b̄ ∈ Nil(R).
Assume b̄ ∈ J(R), then there exists c̄ ∈ R such that 1 = (1 − c̄)(1 − āb̄) =
(1− āb̄)(1− c̄). Then c̄āb̄ = āb̄c̄ = c̄+ āb̄. However, note that A is F -graded and
I is a homogeneous ideal, so R is F -graded. Therefore (by comparing the degrees
of the homogeneous components) the equalities c̄āb̄ = c̄+ āb̄ is impossible, since
āb̄āb̄ 6= 0, hence R is not NJ .

The converse of Corollary 3.5 is equivalent to the Koethe’s conjecture, and
the following is a main result of this article.

Theorem 3.10. The following are equivalent.
(1) The Koethe conjecture holds.
(2) For any ring R, J(R[x]) = N(R)[x].
(3) For any NI-ring R, R[x] is an NJ-ring.

Proof. (1) ⇔ (2) is obtained by [10, Theorem 22].
(2) ⇒ (3) Suppose R is NI, then by the condition(2) J(R[x]) = N(R)[x] =

Nil(R)[x]. Thus R[x]
J(R[x]) = R[x]

N(R)[x] = ( R
N(R) )[x] is reduced, hence R[x] is NJ .

(3) ⇒ (2) Let R be a ring and S = {(m, a) | m ∈ Z, a ∈ N(R)}.
Define addition and multiplication in S by

(m, a) + (m, b) = (m+ n, a+ b), (m, a)(m, b) = (mn,mb+ na+ ab)
for m,n ∈ Z, a, b ∈ N(R). Then S is an NI ring with identity 1S = (1, 0)
and Nil(S) = { (0, a) | a ∈ N(R)} = N(S). So by condition (3), S[x] is
NJ and so J(S[x]) = N(S)[x] ∼= N(R)[x]. Thus N(R)[x](∼= J(S[x])) is a left
quasi-regular ideal of R[x], and hence N(R)[x] ⊆ J(R[x]). Therefore we have
J(R[x]) = N(R)[x] by a Theorem of Amitsur [1, Theorem 2.5.23]. �

Using the above theorem, we can construct an example that NJ condition
is not closed under subrings.

Example 3.11. Let R be the ring in Example 2.1(1). Then R is NJ but not
NI. Thus, S = R[[x]] is also NJ by the Theorem 3.3. However its subring
T = R[x] is not NJ by Lemma 3.4.

Due to Lam and Leory [12, 13] a subring S of a ring R is called a (right)
corner ring of R if there exists and additive subgroup C of R such that R =
S ⊕ C,CS ⊆ C. The subgroup C is called a complement of S.

A corner ring S of a ring R is called Peirce corner if there is an idempotent
e = e2 ∈ R such that S = eRe. Lam [12] showed that every corner ring of a
ring R is a unital corner of some Peirce corner of R and is also a Peirce corner
of some unital corner of R.
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We have the following result on corner rings.

Theorem 3.12. A ring R is NJ if and only if so is every (right) corner ring
of R.

Proof. If we choose e = 1R ∈ R then R = eRe is a corner ring of itself. Thus,
we only prove that the necessary condition of this theorem. Let R be an NJ
ring. By Propositon 2.2(2) every Peirce corner ring of R is NJ . Now consider
the case of right unital corner ring of R. Let S be a right unital corner ring of
R. Let a ∈ N(S) and s ∈ S. Since R is NJ , there is an element 1 − r ∈ R
such that (1 − r)(1 − sa) = 1. By the definition r = t + c with t ∈ S, c ∈ C.
Now c(1 − sa) = 1 − (1 − t)(1 − sa) = sa + t − tsa ∈ C ∩ S = (0). Thus
1 = (1 − r)(1 − sa) = (1 − t)(1 − sa) − c(1 − sa) = (1 − t)(1 − sa), and hence
sa is left quasi-regular in S. Therefore S is NJ .

�

Since R is a corner of R[x; θ, δ] and also is a corner of upper triangular matrix
rings of itself, we have the following corollary for any endomorphism θ and a
θ-derivation δ of R.

Corollary 3.13. (1) If R[x; θ, δ] is NJ , then so is R.
(2) R is NJ if and only if the n×n upper triangular matrix ring over R is NJ
for any n ≥ 1.
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