DOI QR코드

DOI QR Code

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa (Department of Basic Sciences and Humanities, GMR Institute of Technology) ;
  • Singh, Vivek (Department of Physics, Banaras Hindu University)
  • Received : 2018.07.17
  • Accepted : 2018.11.26
  • Published : 2018.12.25

Abstract

The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Keywords

KGHHD@_2018_v2n6_525_f0001.png 이미지

FIG. 1. Cross-sectional view of the elliptical air hole photonic crystal fiber.

KGHHD@_2018_v2n6_525_f0002.png 이미지

FIG. 2. Variation of effective cladding refractive index (neff,cl) of PCF as a function of wavelength for different eccentricity values of air hole for Λ = 2.2 μm and a = 0.52 μm.

KGHHD@_2018_v2n6_525_f0003.png 이미지

FIG. 3. Variation of dispersion as a function wavelength with varying eccentricity of air hole for Λ = 2.2 μm and a = 0.52 μm.

KGHHD@_2018_v2n6_525_f0004.png 이미지

FIG. 4. Effective area of a PCF as a function of wavelength for different eccentricity of air hole at Λ = 2.2 μm and a = 0.52 μm.

KGHHD@_2018_v2n6_525_f0005.png 이미지

FIG. 6. (a) Calculated SPM broaden spectrum of the Gaussian pulse at eccentricity e = 0.2 for L = 0.6 Km, (b) Pulse propagation along the length 0.6 Km for e = 0.2. (c) Calculated SPM broaden spectrum of the Gaussian pulse at eccentricity e = 0.6 for L = 0.6 Km, (d) Pulse propagation along the length 0.6 Km for e = 0.6.

KGHHD@_2018_v2n6_525_f0006.png 이미지

FIG. 5. Nonlinear coefficient variation of a PCF as a function of wavelength for different eccentricity values of air hole for at Λ = 2.2 μm and a = 0.52 μm.

TABLE 1. Comparison of Zero dispersion wavelengths

KGHHD@_2018_v2n6_525_t0001.png 이미지

References

  1. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-854 (2003). https://doi.org/10.1038/nature01940
  2. P. S. J. Russel, "Photonic crystal fibers," J. Lightw. Tech. 24, 4729-4749 (2006). https://doi.org/10.1109/JLT.2006.885258
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
  4. H. Ademgil and S. Haxha, "Endlessly single mode photonic crystal fiber with improved effective mode area," Opt. Commun. 285, 1514-1518 (2012). https://doi.org/10.1016/j.optcom.2011.10.067
  5. R. K. Sinha, A. Kumar, and T. S. Saini, "Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features," IEEE J. Sel. Top. Quantum Electron. 22, 287-292 (2016). https://doi.org/10.1109/JSTQE.2015.2477781
  6. M. J. Steel and R. M. Osgood Jr., "Polarization and dispersion properties of elliptical-hole photonic crystal fibers," J. Lightw. Technol. 19, 495-503,(2001). https://doi.org/10.1109/50.920847
  7. Md. Selim Habib, Md. Samiul Habib, S. M. Abdur Razzak, Yoshinori Namihira, M. A. Hossain, and M. A. Goffar Khan, "Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers," Optik - Int. J. Light Electron Opt. 124, 3851-3855 (2013). https://doi.org/10.1016/j.ijleo.2012.12.014
  8. S. K. Varshney, M. P. Singh, and R. R. Sinha, "Propagation characteristics of photonic crystal fibers," J. Opt. Commun. 24, 192-198 (2003).
  9. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003). https://doi.org/10.1364/OE.11.001503
  10. K. Saitoh, N. J. Florous, and M. Koshiba, "Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach," Opt. Lett. 31, 26-28 (2006). https://doi.org/10.1364/OL.31.000026
  11. Adller de O. Guimarães, Jose P. da Silva, and Emmanuel R. M. Dantas, "Chromatic dispersion of an optical fiber based on photonic quasi crystals with twelve fold symmetry and its application as directional coupling," J. Microwaves, Optoelectron. Electromagn. Appl. 14, 170-182 (2015). https://doi.org/10.1590/2179-10742015v14i2481
  12. Md. Selim Habib, Md. Samiul Habib, S. M. Abdur Razzak, and Md. Anwar Hossain, "Proposal for highly bi-refringent broadband dispersion compensating octagonal photonic crystal fiber," Opt. Fiber Technol. 19, 461- 467 (2013). https://doi.org/10.1016/j.yofte.2013.05.014
  13. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003). https://doi.org/10.1109/LPT.2003.818215
  14. N. Muduli, G. Palai, and S. K. Thripathy, "Analysis of nonlinear PCF for birefringence application using FDTD method," Optik - Int. J. Light Electron Opt. 125, 3499-3502 (2014). https://doi.org/10.1016/j.ijleo.2014.01.177
  15. T. S. Saini, A. Kumar, and R. K. Sinha, "Asymmetric largemode- area photonic crystal fiber structure with effective single-mode operation: design and analysis," Appl. Opt. 55, 2306-2311 (2016). https://doi.org/10.1364/AO.55.002306
  16. D. K. Sharma, S. M. Tripathi, and A. Sharma, "Optical characteristics of polymer-infused microstructure optical fiber using an analytical field model," Optik - Int. J. Light Electron Opt. 140, 1-9 (2017). https://doi.org/10.1016/j.ijleo.2017.04.035
  17. J. F. Liao, J. Q. Sun, M. D. Du, and Y. Qin, "Highly nonlinear dispersion-flattened slotted spiral photonic crystal fibers," IEEE Photon. Technol. Lett. 26, 380-383 (2014). https://doi.org/10.1109/LPT.2013.2293661
  18. T. S. Saini, A. Kumar, and R. K. Sinha, "Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications," Appl. Opt. 53, 7246-7251 (2014). https://doi.org/10.1364/AO.53.007246
  19. P. S. Maji and P. R. Chaudhuri, "Near-elliptic core triangular-lattice and square-lattice PCFs: A comparison of birefringence, cut-off and GVD characteristics towards fiber device application," J. Opt. Soc. Korea 18, 207-216 (2014). https://doi.org/10.3807/JOSK.2014.18.3.207
  20. L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004). https://doi.org/10.1364/OPEX.12.002371
  21. P. S. Maji and P. R. Chaudhuri, "Designing an ultra-negative dispersion photonic crystal fiber with square-lattice geometry," ISRN Optics, Article ID 545961 (2014).
  22. J. Wang, C. Jiang, W. Hu, M. Gao, and H. Ren, "Dispersion and polarization properties of elliptical air hole containing photonic crystal fibers," Opt. Laser Technol. 39, 913-917 (2007). https://doi.org/10.1016/j.optlastec.2006.07.003
  23. A. Agrawal, N. Kejalakshmy and B. M. A. Rahman, "Polarization and dispersion properties of elliptical hole golden spiral photonic crystal finer," Apply. Phys. B 99, 717-726 (2010).
  24. L. Hong, C. Haiyaing, and L. Jim, "Characteristics and analysis of hybrid photonic crystal fiber with hexagonal structure," Optik - Int. J. Light Electron Opt. 126, 2335-2337 (2015). https://doi.org/10.1016/j.ijleo.2015.05.124
  25. J. C. G. Vega, R. M. R. Dagnino, M. A. M. Nava, and S. C. Cerda, "Mathieu functions, a visual approach," Am. J. Phys. 71, 233-242 (2003). https://doi.org/10.1119/1.1522698
  26. T. Do-Nhat and F. A. Alhargan, "Exact eigen value equations of modes in elliptical fibers of step-index profile," Radio Sci. 32, 1337-1345 (1997). https://doi.org/10.1029/97RS00712
  27. J. K. Shaw, W. M. Henry, and W. R. Winfrey "Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation" J. Lightw. Technol. 13, 2359-2371 (1995). https://doi.org/10.1109/50.475576
  28. Y. Li, C. Wang, and M. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004). https://doi.org/10.1016/j.optcom.2004.04.040
  29. M. A. Hussain, Y. Namihira, M. A. Islam, S. M. A. Razzak, Y. Hirako, and K. Miyagi, "Tailoring supercontinuum generation using highly nonlinear photonic crystal fiber," Opt. Laser Technol. 44, 1889-1896 (2012). https://doi.org/10.1016/j.optlastec.2012.01.029
  30. G. P. Agarwal, Nonlinear fiber optics (Academic Press, Fourth Edition, 2006), Chapter 4.
  31. S. Revathi, S. R. Inbathini, and R. A. Saifudeen, "Highly nonlinear and birefringent spiral photonic crystal fiber," Adv. OptoElectron., Article ID 464391 (2014).
  32. T.-L. Wu and C.-H. Chao, "Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole," IEEE Photon. Technol. Lett. 16, 126-128 (2004). https://doi.org/10.1109/LPT.2003.819411
  33. Z. Ya-Ni, "Optimization of highly nonlinear dispersionflattened photonic crystal fiber for supercontinuum generation," Chin. Phys. B, 22, 014214-5 (2013). https://doi.org/10.1088/1674-1056/22/1/014214