DOI QR코드

DOI QR Code

Multipath combining method for frequency shift keying underwater communications mimicking dolphin whistle

돌고래 휘슬음을 모방한 frequency shift keying 수중통신기법의 다중경로결합 수신 방법

  • Received : 2018.09.04
  • Accepted : 2018.11.22
  • Published : 2018.11.30

Abstract

This paper proposes a dolphin whistle mimicking underwater communication method using FSK (Frequency Shift Keying) and method to improve BER (Bit Error Rate) performance by using multipath gain combining. The proposed method divides whistle sound into short time intervals and transmits FSK modulated signal that ensures orthogonality of the symbol. Multipath gain can be obtained by using characteristic of mimicked signal frequency that varies with time. To demonstrate the performance of the proposed method, computer simulations and lake experiments were conducted. Computer simulation results show that an additional multipath gain is obtained by multipath. From lake experiments, when symbol length is 20 msec and modulation band is 900 Hz, the proposed FSK method with multipath combining gain obtains BER of 0.002, which is better than CSS (Chirp Spread Spectrum) with BER of 0.185. he proposed based on FSK method has higher imitation degree than the CSS method by analyzing mean cross-correlation value in the time - frequency domain of the imitated signal and actual whistle signal.

본 논문은 수중에서 은밀성을 확보하기 위해 FSK(Frequency Shift Keying)를 이용하여 돌고래 휘슬음을 모방하는 통신 기법과 다중경로 결합 이득을 이용하여 BER(Bit Error Rate) 성능을 높이는 방법을 제안한다. 제안하는 방법은 휘슬음을 짧은 시간 구간으로 나누고 그 구간에 심볼의 직교성을 보장하는 FSK 변조신호를 만든다. 그리고 휘슬음을 모방할 때 다중경로 채널에서 심볼간의 ISI(Inter Symbol Interference)가 줄어드는 특징을 이용하여 다중경로 결합 이득을 얻는 방법이다. 제안한 방법의 성능을 보이기 위해 전산모의실험과 실제 호수실험을 진행하였다. 전산모의실험을 통해 다중경로에 의해 추가적인 다중경로 결합 이득이 발생함을 보였다. 호수 실험에서는 제안된 FSK 방법이 20 msec의 심볼 길이와 900 Hz의 변조 대역을 갖는 경우 다중경로 결합 이득을 얻어 0.002의 BER갖고 0.185의 BER을 갖는 CSS(Chirp Spread Spectrum)보다 우수함을 보였다. 그리고 모방한 신호와 실제 휘슬 신호의 시간-주파수 영역에서 평균 상호 상관 값을 통해 모방도를 분석하여 제안된 FSK방법이 CSS방법에 비해 높은 모방도를 보였다.

Keywords

GOHHBH_2018_v37n6_404_f0001.png 이미지

Fig. 1. Spectrogram of dolphin whistle.

GOHHBH_2018_v37n6_404_f0002.png 이미지

Fig. 2. Dolphin whistle mimicking communication signal spectrogram, (a) large K, (b) small K.

GOHHBH_2018_v37n6_404_f0003.png 이미지

Fig. 3. Dolphin whistle biomimicking communication signal structure.

GOHHBH_2018_v37n6_404_f0004.png 이미지

Fig. 4. Multipath gain combiner.

GOHHBH_2018_v37n6_404_f0005.png 이미지

Fig. 5. Non-coherent FSK demodulator.

GOHHBH_2018_v37n6_404_f0006.png 이미지

Fig. 6. Path combining vs BER gain.

GOHHBH_2018_v37n6_404_f0007.png 이미지

Fig. 7. Channel delay (a) and sound speed profile (b).

GOHHBH_2018_v37n6_404_f0008.png 이미지

Fig. 8. Simulation BER result, (a) 10 msec, (b) 20 msec.

GOHHBH_2018_v37n6_404_f0009.png 이미지

Fig. 9. Lake experiment configuration.

GOHHBH_2018_v37n6_404_f0010.png 이미지

Fig. 10. Received signal spectrogram (a) and time delay spread (b) of Kyungchun lake experiment.

Table 1. BER results of Kyugchun lake experiments.

GOHHBH_2018_v37n6_404_t0001.png 이미지

Table 2. Correlation coefficient average.

GOHHBH_2018_v37n6_404_t0002.png 이미지

References

  1. S. Liu, G. Qiao and A. Ismail, "Covert underwater acoustic communication using dolphin sounds," J. Acoust. Soc. Am. 133, EL300 (2013). https://doi.org/10.1121/1.4795219
  2. S. Liu, T. Ma, G. Qiao, L. Ma, and Y. Yin, "Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles," J. Appl. Acoust., 120, 120-128 (2017). https://doi.org/10.1016/j.apacoust.2017.01.018
  3. G. Qiao, Y. Zhao, S. Liu, and M. Bilal, "Dolphin sounds inspired covert underwater acoustic communication and micro modem," J. Sensors, 17, 2447 (2017).
  4. V. M. Janik and L. S. Sayigh. "Communication in bottlenose dolphins: 50 years of signature whistle research," J. Comparative Physiology A. 6, 479-489 (2013).
  5. D. K. Mellinger, S. W. Martin, R. P. Morrissey, L. Thomas, and J. J. Yosco, "A method for detecting whistles, moans and other frequency contour sounds," J. Acoust. Soc. Am., 129, 4055-4061 (2011). https://doi.org/10.1121/1.3531926
  6. T. H. Lin, L. S. Chou, T. Akamatsu, H. C. Chan, and C. F. Chen, "An automatic detection algorithm for extracting the representative frequency of cetacean tonal sounds," J. Acoust. Soc. Am. 134, 2477-2485 (2013). https://doi.org/10.1121/1.4816572
  7. D. Gillespie, M. Caillat, J. Gordon, and P. White, "Automatic detection and classificatioin of odeontocete whistles," J. Acoust. Soc. Am. 134, 2427-2437 (2013). https://doi.org/10.1121/1.4816555
  8. X. Wang, M. Fei, and X. Li, "Performance of chirp spread spectrum in wireless communication systems," Proc. IEEE Communication Systems, Singapore, (2008).
  9. W. R. Bennet and S. O. Rice, "Spectral density and autocorrelation functions associated with binary frequency shift keying," J. Bell Labs Technical, 42, 2355-2385 (1963). https://doi.org/10.1002/j.1538-7305.1963.tb00969.x
  10. G. E. Bottomley, T. Ottosson, and Y. P. E. Wang, "A generalized RAKE receiver for interference suppression," J. IEEE Selected Areas in Communication, 18, 1536-1545 (2000). https://doi.org/10.1109/49.864017
  11. U. Gorb, A. L. Welti, E. Zollinger, R. Kung, and H. Kaufmann, "Microcellular direct-sequence spread sprectrum radio system using N-path RAKE receiver," J. IEEE selected Areas in Communication, 8, 772-780 (1990). https://doi.org/10.1109/49.56384
  12. B. M. Seo and H. S. Cho, "Performance evaluation of diversity reception of underwater acoustic code division multiple access using lake experiment" (in Korean), J. Acoust. Soc. Kr. 36, 39-48 (2017). https://doi.org/10.7776/ASK.2017.36.1.039