DOI QR코드

DOI QR Code

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors

잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘

  • Lim, Jun-Seok (Department of Electrical Engineering, Sejong University)
  • 임준석 (세종대학교 전자정보통신공학과)
  • Received : 2018.08.24
  • Accepted : 2018.11.21
  • Published : 2018.11.30

Abstract

Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

서로 떨어져 설치된 두 개의 음향 센서에 도달하는 신호의 상호 지연 시간을 추정하는 것은 실내 음향과 소나 등에서 목표물 위치 추정 문제나 추적 및 동기화에 이르기까지 다방면에서 쓰이고 있다. 시간 지연을 구하는 방법에서는 두 수신 신호 사이의 상호 상관을 이용한 방법이 대표적이다. 그러나 이 방법은 수신 음향 센서에 잡음이 부과 되는 것에 충분한 고려가 없었다. 본 논문은 수신 음향 센서에 모두 잡음이 부과된 경우를 고려한 새로운 시간 지연 추정 방법을 제안한다. 기존의 일반 상호 상관법과 적응 고유치 분석법과 비교를 통해서 새로 제안한 알고리즘이 유색 신호에 부가된 가우시안 잡음환경에서 우수성이 있음을 확인한다.

Keywords

GOHHBH_2018_v37n6_499_f0001.png 이미지

Fig. 1. Time delay estimation modeling by system identification approach.

GOHHBH_2018_v37n6_499_f0002.png 이미지

Fig. 2. Time delay channel model between two received signals.

GOHHBH_2018_v37n6_499_f0003.png 이미지

Fig. 3. Corrected time delay estimation system diagram for added noise sensors.

GOHHBH_2018_v37n6_499_f0004.png 이미지

Fig. 4. Time delay estimation system diagram for added noise sensors.

GOHHBH_2018_v37n6_499_f0005.png 이미지

Fig. 5. Performance comparison in case of white gaussian signal source (-o-: proposed algorithm, -x-: GCC-PHAT, -□-: Adaptive eigenvector decomposition method).

GOHHBH_2018_v37n6_499_f0006.png 이미지

Fig. 6. Performance comparison in case of colored signal source (-o-: proposed algorithm, -x-: GCCPHAT, -□-: Adaptive eigenvector decomposition method).

GOHHBH_2018_v37n6_499_f0007.png 이미지

Fig. 7. Comparison of TDE in T60 = 250 ms and SNR = 10 dB. (a) proposed algorithm (b) GCC[9] (c) adaptive EVD[12].

GOHHBH_2018_v37n6_499_f0008.png 이미지

Fig. 8. Comparison of TDE in T60 = 610 ms and SNR = 10 dB. (a) proposed algorithm (b) GCC[9] (c) adaptive EVD[12].

References

  1. E. Tiana-Roig, F. Jacobsen, and E. Grande, "Beamforming with a circular microphone array for localization of environmental noise sources," J. Acoust. Soc. Am. 128, 3535-42 (2010). https://doi.org/10.1121/1.3500669
  2. J. Shin, H. Park, and E. Chang, "An ESPRIT-based super-resolution time delay estimation algorithm for real-time locating systems" (in Korean), J. KICS. 38, 310-317 (2013).
  3. J. Shin, S. Myong, E. Chang, and H. Park, "A super-resolution time delay estimation algorithm for spread spectrum signals" (in Korean), J. KICS, 37, 119-127 (2012).
  4. J. S. Lim and W. Hong, "An adaptive time delay estimation method based on canonical correlation analysis" (in Korean), J. Acoust. Soc. Korea, 32, 548-555 (2013). https://doi.org/10.7776/ASK.2013.32.6.548
  5. P. Feintuch, N. Bershad, and F. Reed, "Time delay estimation using the LMS adaptive lter-dynamic behaviour," IEEE Trans. Acoust. Speech Signal Process. 29, 571-576 (1981). https://doi.org/10.1109/TASSP.1981.1163608
  6. K. Ho, Y. Chan, and P. Ching, "Adaptive time-delay estimation in nonstationary signal and noise power environments," IEEE Trans. Signal Process. 41, 2289-2299 (1993). https://doi.org/10.1109/78.224240
  7. H. So, P. Ching, and Y. Chan, "A new algorithm for explicit adaptation of time delay," IEEE Trans. Signal Process. 42, 1816-1820 (1994). https://doi.org/10.1109/78.298289
  8. S. Dooley and A. Nandi, "Adaptive subsample time delay estimation using Lagrange interpolators," IEEE Signal Process. Lett. 6, 65-57 (1999). https://doi.org/10.1109/97.744626
  9. G. Carter, Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test and Evaluation Engineers (IEEE press, NY, 1993) pp. 1-28.
  10. M. Brandstein and H. Silverman, "A practical methodology for speech source localization with microphone arrays," Comput., Speech Lng. 11, 91-126 (1997). https://doi.org/10.1006/csla.1996.0024
  11. J. Benesty, "Adaptive eigenvalue decomposition algorithm for passive acoustic source localization," J. Acoust. Soc. Am. 107, 384-391 (2000). https://doi.org/10.1121/1.428310
  12. R. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag. 25, 21-30 (2007).
  13. J. S. Lim and W. Hong, "Adaptive time delay estimation using l1 constraint," Proc. J. Acoust. Soc. Kr. Suppl.1(s) 32, 272-275 (2013).
  14. H. Lee, S. Park, and S. Park, "Introduction to compressive sensing," Mag. IEIE. 38, 19-30 (2011).
  15. A. Cichocki and S. Amari, Adaptive blind signal and image processing (John Wiley and Sons, Chichester, England, 2002), pp. 67-78.
  16. J. S. Lim and H. S. Pang, "Reweighted l1 regularized TLS linear neuron for the sparse system identification," Neurocomputing, 173, 1972-1975 (2016). https://doi.org/10.1016/j.neucom.2015.08.020
  17. Y. Chen, Y. Gu, and A. Hero, "Sparse LMS for system identification," Proc. ICASSP 2009, pp. 3125-3128, Taipei, Taiwan, Apr. (2009).
  18. Image-source method, http://www.eric-lehmann.com/, 2018.