DOI QR코드

DOI QR Code

Moisture Permeation Characteristics of Hollow Fiber Membrane Tube for Humidification According to Input Conditions of Wet Steam

습증기 투입 조건에 따른 가습용 중공사막 튜브 수분 투과 특성

  • CHAE, JONGMIN (Graduate School of Mechanical Engineering, Chungnam University) ;
  • YU, SANGSEOK (School of Mechanical Engineering, Chungnam University)
  • 채종민 (충남대학교 대학원 기계공학부) ;
  • 유상석 (충남대학교 기계공학부)
  • Received : 2018.09.28
  • Accepted : 2018.12.30
  • Published : 2018.12.30

Abstract

Recently, fuel cell field is receiving much attention as an environmentally friendly energy in the world. Among the various types of fuel cells, in the case of PEMFC, ions move through the membrane in the middle of the unit cell. Therefore, proper moisture is required inside the PEMFC. In the case of membrane type humidifier, flat membrane or hollow fiber membrane is mainly used. Since various parameters can change the performance, the performance investigation has to be carried out with parameters. In this study, water transport of hollow fiber membrane was investigated in terms of principle operating conditions such as temperature and flow rate.

Keywords

SSONB2_2018_v29n6_620_f0001.png 이미지

Fig. 1. Hollow fiber membrane tube

SSONB2_2018_v29n6_620_f0002.png 이미지

Fig. 2. Test jig design and shape

SSONB2_2018_v29n6_620_f0003.png 이미지

Fig. 3. Schematics of hollow fiber water transport evaluation system

SSONB2_2018_v29n6_620_f0004.png 이미지

Fig. 4. Experimental procedures of water transport through hollow fiber tube

SSONB2_2018_v29n6_620_f0005.png 이미지

Fig. 5. Water transport in two different temperatures (type 1)

SSONB2_2018_v29n6_620_f0006.png 이미지

Fig. 6. Water transport by two different atmospheric conditions

SSONB2_2018_v29n6_620_f0007.png 이미지

Fig. 7. Water transport in three different temperatures (type 2)

SSONB2_2018_v29n6_620_f0008.png 이미지

Fig. 8. Water transport in terms of flow rates (type 2)

Table 1. Specifications of hollow fiber membrane tube

SSONB2_2018_v29n6_620_t0001.png 이미지

Table 2. Test jig specifications

SSONB2_2018_v29n6_620_t0002.png 이미지

Table 3. Operating parameters of water transport experiment

SSONB2_2018_v29n6_620_t0003.png 이미지

References

  1. T. Ha, H. S. Kim, and K. Min, "Experimental and Modeling Study of Humidification Performance of Membrane Humidifier for PEM Fuel Cell", The Korean Society of Automotive Engineers, 2006, pp. 1766-1771.
  2. D. Chen and H. Peng, "A thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control", Transactions of the ASME, Vol. 127, No. 3, 2005, pp. 424-432. https://doi.org/10.1115/1.1862676
  3. S. K. Park, S. Y. Choe, and S. H. Choi, "Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications", International Journal of Hydrogen Energy, Vol. 33, No. 9, 2008, pp. 2273-2282. https://doi.org/10.1016/j.ijhydene.2008.02.058
  4. D. Chen, W. Li, and H. Peng, "An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control", Journal of Power Sources, Vol. 180, No. 1, 2008, pp. 461-467. https://doi.org/10.1016/j.jpowsour.2008.02.055
  5. S, Park and I. H. Oh, "An analytic model of Nafion TM membrane humidifier for proton exchange membrane fuel cells", Journal of Power Sources, Vol. 188, No. 2, 2009, pp. 498-501. https://doi.org/10.1016/j.jpowsour.2008.12.018
  6. S. Kang, K. Min, and S. Yu, "Two dimensional dynamic modeling of a shell-and-tube water-to-gas membrane humidifier for proton exchange membrane fuel cell", International Journal of Hydrogen Energy, Vol. 35, No. 4, 2010, pp. 1727- 1741. https://doi.org/10.1016/j.ijhydene.2009.11.105
  7. M. Lee, K. Kim, Y. Shin, and D. Kim, "Structural Optimization of Gas-to-gas Membrane Humidifier for Fuel Cell Vehicle", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 2, 2010, pp. 111-116.
  8. C. Borgnakke and R. E. Sonntag, "Fundamenta-ls of Thermodynamics, Seventh Edition", Text Books, Korea, 2010, pp. 740-747.