DOI QR코드

DOI QR Code

효율적 의사결정을 위한 빅데이터 활용 스마트 스페이스 플랫폼 연구

Smart Space based on Platform using Big Data for Efficient Decision-making

  • 투고 : 2018.08.02
  • 심사 : 2018.10.18
  • 발행 : 2018.12.31

초록

전 세계 4차 산업혁명의 도래에 맞춰 한국은 적극적으로 국가적 대응계획 I-Korea 4.0을 수립하여 2017년 11월에 발표하였다. 이 계획은 국가성장을 위한 산업혁신과 사회문제 해결을 목표로 하고 있다. 부동산산업도 예외는 아니며 산업혁신을 위해서는 스마트환경에서 주거, 상업, 업무, 복합 등 다양한 가용공간의 효과적 활용이 선행되어야 한다. 이를 위해서는 효율적 의사결정이 필요하고 이는 공간수요자 행태의 실시간 정보와 정확한 예측이 이루어 질 때 가능하다. 이에, 본 연구는 빅데이터 기반 스마트 스페이스 플랫폼을 제안하고 플랫폼의 구조와 서비스를 구체화 시키고자 한다. 스마트 스페이스 플랫폼도 스마트 트래픽, 스마트 시티, 스마트 헬스 등 다양한 스마트환경 적용사례처럼 급속히 발전하고 있는 정보통신기술(ICT)을 이용해 빅데이터의 효율적 저장, 접근, 분석, 활용이 가능하다. 스마트 스페이스 플랫폼의 구조는 6개 레이어 즉, Collection layer, Transfer layer, Storage layer, Service layer, Application layer, Management layer로 구성된다. 이 플랫폼은 의사결정자들이 행위기반(activity-based), 시장기반(market-based), 정책기반(policy-based) 빅데이터를 Searching, Mining, Integrating, Storing, Analyzing, Visualizing 할 수 있는 서비스체계를 가지고 있다.

With the rise of the Fourth Industrial Revolution and I-Korea 4.0, both of which pursue strategies for industrial innovation and for the solution to social problems, the real estate industry needs to change in order to make effective use of available space in smart environments. The implementation of smart spaces is a promising solution for this. The smart space is defined as a good use of space, whether it be a home, office, or retail store, within a smart environment. To enhance the use of smart spaces, efficient decision-making and well-timed and accurate interaction are required. This paper proposes a smart space based on platform which takes advantage of emerging technologies for the efficient storage, processing, analysis, and utilization of big data. The platform is composed of six layers - collection, transfer, storage, service, application, and management - and offers three service frameworks: activity-based, market-based, and policy-based. Based on these smart space services, decision-makers, consumers, clients, and social network participants can make better decisions, respond more quickly, exhibit greater innovation, and develop stronger competitive advantages.

키워드

JBSHBC_2018_v25n4_108_f0001.png 이미지

Structure of a smart space platform <그림 1> 스마트 스페이스 플랫폼 구조

JBSHBC_2018_v25n4_108_f0002.png 이미지

Smart space platform services <그림 2> 스마트 스페이스 플랫폼의 다양한 서비스

Efficiency of smart space platform <표 1> 스마트 스페이스 플랫폼의 유용성

JBSHBC_2018_v25n4_108_t0001.png 이미지

Effectiveness with decision-making <표 2> 의사결정 정보의 효과성

JBSHBC_2018_v25n4_108_t0002.png 이미지

참고문헌

  1. Avelar E., Marques L., Passos D., Macedo R., & Dias K., Nogueira M. (2015). "Interoperability issues on heterogeneous wireless communication", Computer Communications, 58, 4-15. https://doi.org/10.1016/j.comcom.2014.07.005
  2. Chang R., Kauffman R., & Kwon Y. (2013). "Understanding the paradigm shift to computational social science in the presence of big data", Decision Support Systems, 63, 67-80.
  3. Chen B. & Lee S. (2014). "A study on big data processing mechanism and applicability", International Journal of Software Engineering Its Applications, 8(8), 73-82.
  4. Chen H., Chiang R., & Storey V. (2012). "Business intelligence and analytics: From big data to big impact", MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
  5. Demirkan H. (2013). "A smart healthcare systems framework", IT Professional, 15(5), 38-45. https://doi.org/10.1109/MITP.2013.35
  6. Felipe G., Enrique C., Francisco J., Cristina L., Timo O., & Raja B. (2011). "Experiences inside the ubiquitous Oulu smart city", Computer, 44(6), 48-55. https://doi.org/10.1109/MC.2011.132
  7. Hashem I., Chang V., Anuar N., Adewole K., Yaqoob I., Gani A., Ahmed E., & Chiroma H. (2016). "The role of big data in smart city", International Journal of Information Management, 36, 748-758. https://doi.org/10.1016/j.ijinfomgt.2016.05.002
  8. IEEE Smart Grid Working Group (2017). Big data analytics, machine learning and artificial intelligence in the smart grid: Introduction, benefits, challenges and issues, IEEE Smart Grid white paper, USA.
  9. ISACA (2013). Big Data Impact and Benefits, an ISACA white paper, USA.
  10. Jeon B. & Kim H. (2017), "An Exploratory Study on the Sharing and Application of Public Open Big Data", Informatization Policy, 24(3), 27-41. https://doi.org/10.22693/NIAIP.2017.24.3.027
  11. Kim H. (2017), "Deep Learning City: A Big Data Analytics Framework for Smart Cities", Informatization Policy, 24(4), 79-92. https://doi.org/10.22693/NIAIP.2017.24.4.079
  12. Kim S., Shim S., & Seo Y. (2017), "SNA Pattern Analysis on the Public Software Industry based on Open API Big Data from Korea Public Procurement Service", Informatization Policy, 24(3). 42-66. https://doi.org/10.22693/NIAIP.2017.24.3.042
  13. Lee J., Phaal R., & Lee S. (2013). "An integrated service-device-technology roadmap for smart city development", Technological Forecasting & Social Change, 80, 286-306. https://doi.org/10.1016/j.techfore.2012.09.020
  14. Moon S., Pyeon M., Bae S., Lee D., & Han S. (2016). "Big data architecture design for the development hyper live map", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(2), 207-215. https://doi.org/10.7848/KSGPC.2016.34.2.207
  15. Mainetti L., Palano L., Patrono L., Stefanizzi M., & Tarricone L. (2015). "AnIo T-aware architecture for smart healthcare systems", IEEE Internet of Things Journal, 2(6), 515-526. https://doi.org/10.1109/JIOT.2015.2417684
  16. Park J., Lee M., Shin D., & Ahn J. (2015). "Deduction of the policy issues for activating the geospatial big data services", Journal of Korea Spatial Information Society, 23(6), 19-29.
  17. Chang R., Kauffman R., & Kwon Y. (2014). "Understanding the paradigm shift to computational social science in the presence of big data", Decision Support System, 63, 67-80. https://doi.org/10.1016/j.dss.2013.08.008
  18. Raguseo E. (2018). "Big data technologies: An empirical investigation on their adoption, benefits and risks for companies", International Journal of Information Management, 38, 187-195. https://doi.org/10.1016/j.ijinfomgt.2017.07.008
  19. Rita Y., Herru C., Cho K., & Tony B. (2016). "Sustainable smart home and home automation: Big data analytics approach", International Journal of Smart Home, 10(8), 177-198.
  20. Rogge N., Agasisti T., & Witte K. (2017). "Big data and the measurement of public organizations' performance and efficiency: The state-of-the-art", Public Policy and Administration, 32(4), 263-281. https://doi.org/10.1177/0952076716687355
  21. Tiwari S., Wee H., & Daryanto Y. (2018). "Big data analytics in supply chain management between 2010 and 2016: Insights to industries", Computers and Industrial Engineering, 115, 319-330. https://doi.org/10.1016/j.cie.2017.11.017
  22. Seo Y. & Kim W. (2015). "Information visualization process for spatial big data", Journal of Korea Spatial Information Society, 23(6), 109-116. https://doi.org/10.12672/ksis.2015.23.6.109
  23. Xu K., Zhen H., Li Y., & Yue L. (2016). "Big data acquisition and analysis platform for intermodal transport", International Journal of Database Theory and Application, 9(12), 67-78. https://doi.org/10.14257/ijdta.2016.9.12.07